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Abstract

Estimating and analyzing traffic conditions on large arterial networks is an inherently difficult
task. The first goal of this article is to demonstrate how arterial traffic conditions can be
estimated using sparsely sampled GPS probe vehicle data provided by a small percentage of
vehicles. Traffic signals, stop signs, and other flow inhibitors make estimating arterial traffic
conditions significantly more difficult than estimating highway traffic conditions. To address
these challenges, we propose a statistical modeling framework that leverages a large historical
database and relies on the fact that traffic conditions tend to follow distinct patterns over
the course of a week. This model is operational in North California, as part of the Mobile
Millennium traffic estimation platform. The second goal of the article is to provide a global
network-level analysis of traffic patterns using matrix factorization and clustering methods.
These techniques allow us to characterize spatial traffic patterns in the network and to analyze
traffic dynamics at a network scale. We identify traffic patterns that indicate intrinsic spatio-
temporal characteristics over the entire network and give insight into the traffic dynamics of
an entire city. By integrating our estimation technique with our analysis method, we achieve
a general framework for extracting, processing and interpreting traffic information using GPS
probe vehicle data.
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1 Introduction and related work1

Traffic congestion has a significant impact on economic activity throughout much of the world.2

Accurate, reliable traffic monitoring systems, leveraging the latest advances in technology and3

research are essential for active congestion control. They can also be used to study large scale4

traffic patterns and to understand specific travel behavior, network bottlenecks, to design long5

term infrastructure planning and to optimize mobility.6

Until recently, traffic monitoring systems have relied exclusively on data feeds from dedicated7

sensing infrastructure (loop detectors and radars in particular). For highway networks covered8

by such infrastructure systems, it has become common practice to perform estimation of flow,9

density or speed at a very fine spatio-temporal scale [3], using traffic flow models developed in10

the last decades [32, 7, 41]. Probe vehicle data has also been successfully integrated into these11

models [45, 43, 24, 30]. For arterials, traffic monitoring is substantially more difficult: probe ve-12

hicle data is the only significant data source available today with the prospect of global coverage13

in the future. The lack of ubiquity and reliability, the variety of data types and specifications,14

and the randomness of its spatio-temporal coverage encourage the use of both historical and15

real-time data to provide accurate estimates of traffic conditions on large transportation net-16

works. The Mobile Millennium project [26] receives probe vehicle data from a dozen of different17

sources. In Figure 1, we illustrate one of the data source of the Mobile Millennium project: it18

shows a snapshot of probe measurements from San Francisco taxis collected on an arbitrary day19

from midnight to 7:00am (small dots) as well as a snapshot of the probe locations at 7:00am20

(large dots). This figure illustrates both the breadth of coverage when aggregating data over21

long periods of time and the limited information available at a given point in time, limiting the22

direct estimation of the macroscopic state of traffic at a fine spatio-temporal scale. Note that23

filtering algorithms are designed to limit the bias of the different sources of data. For example,24

we filter the measurements during which the hired status of the taxis changes. Aside from less25

abundant sensing compared to existing highway traffic monitoring systems, the arterial network26

presents additional modeling and estimation challenges. The underlying flow physics is more27

complex because of traffic lights (often with unknown cycles), intersections, stop signs, parallel28

queues, and other phenomena.29

We introduce a statistical approach for real-time arterial traffic estimation from probe vehicle30

data, leveraging massive amounts of historical data. Statistical approaches have been proposed31

that rely on either a single measurement per time interval or aggregated measurements per time32

interval [19, 10], neither of which is appropriate in our setting since probe data on arterials is33

available at random times and random locations. Some researchers have examined the process-34

ing of high-frequency probe data (one measurement approximately every 20 seconds or less) [43],35

which allows for reliable calculation of short distance speeds and travel times. In this article,36

we specifically address the processing of sparse probe data where this level of granularity is not37

available. Finally, other approaches based on regression [36], optimization [1], neural networks38

and pattern matching [8] have all been proposed. None of these approaches addresses the issue39

of processing sparse probe data on a dense arterial network.40

41

Besides the ability of providing real time traffic estimation, the results produced by the42

model can be further analyzed to provide a large scale understanding of traffic dynamics both43

in time and in space. Most of previous research in traffic data analysis focus on temporal44

dynamics of individual links (either on arterial or highways) using data-driven approaches:45

in [39, 44, 35], Kalman filter and its extensions, originated from the theory framework of state46

space linear dynamic model, are used for modeling and tracking temporal variations of traffic47

flows; [46, 37] use neural networks to achieve short-term non-linear prediction of traffic flows48

based on historic observations; finally, [40] proposes to perform traffic prediction on individual49

links based on clustering of temporal patterns of traffic flows, while [11] adopts a time-series50
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Figure 1: San Francisco taxi measurement locations, observed at a rate of once per minute. Each small dot represents
the measurement of the location of a taxi, received between midnight and 7:00am, on March 29th, 2010. The large
dots represent the location of taxis visible in the system at 7:00am on that day.

analysis (Autoregressive Moving Average) on traffic flows in order to forecast traffic states. Very51

little progress has been made in analyzing the temporal dynamics of global traffic states of an52

entire large-scale road network. We call global traffic state, the aggregation of the congestion53

states of all the link of the network. Traffic states of neighboring individual roads are often highly54

correlated (both spatially and temporally) and the identification of specific traffic patterns55

or traffic configurations is very informative. They can be used to better understand global56

network-level traffic dynamics and serve as prior knowledge or constraints for the design of traffic57

estimation and prediction platforms. The analysis of traffic patterns is also useful for traffic58

management centers and public entities to plan infrastructure developments and to improve the59

performances of the available network using large-scale control strategies.60

This article proposes an algorithm to identify spatial configurations of traffic states over the61

entire network and analyze large-scale traffic dynamics from traffic state estimates produced62

and collected over long periods of time. We define the network-level traffic state as the vector63

of traffic states for each link of the network at a given moment in time. It is represented in the64

form of multi-variate data, where its dimension is proportional to the amount of links in the65

transportation network. In large networks, this data structure quickly becomes too big to handle,66

limiting the analysis in the original high-dimensional space. In machine learning, this issue is67

commonly addressed using dimension reduction techniques (feature extraction) to simplify the68

representation of the data, remove redundancies and improve the efficiency of analysis techniques69

such as classification. Important applications of these algorithms include image processing70

and natural language processing [12, 9]. In this work, we propose to use a dimensionality71

reduction matrix factorization technique known as Non-negative Matrix Factorization (NMF) [6,72

25] to obtain a low dimensional representation of network-level traffic states. Both the well-73

known Principal Component Analysis (PCA) method, and Locality Preserving Projection (LPP)74

technique are other examples of matrix factorization [28, 15]. However, in contrast to PCA or75

LPP, the NMF algorithm imposes strict non-negativity constraints on the decomposition result.76

This allows NMF to approximate the n-dimensional data vector by an additive combination of77

a set of learned bases. This property also leads to a part-based representation of the original78

data. The learned bases correspond to latent components of the original data so that the79

original data is approximated by a linear positive superposition of the latent components. The80

properties of the NMF have already been exploited for various applications. In text analysis,81

the learned bases are used to label different latent topics contained in text documents. In face82

image representation, the NMF bases indicate important localized components of the face, such83

as the eyes, the mouth or the cheeks. We expect that the distinctive characteristics of NMF84

will lead to a low-dimensional representation of network-level traffic states that exhibits global85

configurations of local traffic states and reflects intrinsic traffic patterns of network-level traffic86
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states.87

The rest of this article is organized as follows. In Section 2 we present the real-time traffic88

estimation algorithm implemented in the Mobile Millennium system. It processes sparsely89

sampled probe vehicles sending their location at random places and random times and leverages90

historical data using a Bayesian update. In Section 3, we introduce the NMF algorithm, used91

in the remainder of the article to perform large scale analysis of the dynamics of traffic. In92

Section 4 and 5, we illustrate and provide a detailed analysis of typical spatial configuration93

patterns of network-level traffic states found by NMF projections. Section 6 further analyzes94

temporal dynamic patterns of the network-level traffic state, which describe evolutions of traffic95

states in the whole network. In Section 7, we conclude our work and discuss our future plans.96

2 Large scale statistical model for arterial traffic estima-97

tion98

We propose a parametric statistical model for large scale traffic estimation from sparsely sampled99

probe vehicles. The parameters of the model represent traffic patterns that are learned from100

massive amounts of probe vehicle travel times collected over long periods of time (section 2.1).101

The historic patterns are used as prior information in a Bayesian real-time estimation algorithm102

with streaming data (section 2.2). The statistical model is based on assumptions aimed at103

limiting the computational complexity of the algorithm while providing an adapted framework104

for arterial traffic estimation when little data is available in real-time but large quantities of105

historical data are collected over time.106

1. The travel time on a link is a random variable (RV) and we assume that travel times107

on different links are independent RVs. In this article, we assume that travel times are108

normally distributed. Other distributions can also be used (e.g. Gamma, log-normal,109

and so on) without modifying the basic concepts of the algorithm. We will specify the110

equations that require modification under a non-normality assumption.111

2. Any given moment in time belongs to exactly one historic time period, characterized by a112

day of the week, a start time and an end time. The set of historic time periods is denoted113

T .114

3. All travel time observations from a specific link l are independent and identically dis-115

tributed within a given (historic) time period, t ∈ T .116

4. Probe vehicles send their location periodically (typically every minute). A trajectory re-117

construction algorithm [27] provides the most likely path p of the vehicle between successive118

location reports. The path p is defined as a set of consecutive links, Lp, along with the119

fraction of the first and last link traversed and the total travel time associated with the120

entire path, yp (time between successive location reports). The fraction of link l traversed121

for the pth observation on link l is denoted wp,l. The time spent on link l is denoted xp, l122

and have the constraint that
∑
l∈Lp

xp,l = yp. The set of path observations for time period123

t is denoted Pt. We assume that these path observations constitute the only data available124

to the model.125

5. Each link of the network has a known minimum travel time bl, found by considering the126

travel time that results from driving some percentage over the speed limit for the entire127

link. Note that the maximum travel time is harder to determine as travel times increase128

with congestion. A statistical analysis of available measurements may provide information129

about maximum travel times.130
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2.1 Learning historic traffic patterns131

The historical model of arterial traffic estimates the parameters Ql,t of the travel time distri-132

bution on each link l for each historic time period t. The corresponding probability density133

function (PDF) of travel times is denoted gl,t(·). In the case of Gaussian distributions, the134

parameters Ql,t are written Ql,t = (µl,t, σl,t), where µl,t and σl,t represent the mean and the135

standard deviation of the travel times on link l for the period t.136

For the pth path observation, the path travel time distribution is denoted gLp,t(·). Under137

assumption 1, the PDF of travel time on a path is computed as the convolution of the PDF of138

travel times of the links that make up the path.139

The historic algorithm determines the values of Ql,t for each link and time period that are140

most consistent with the probe data received. This is achieved by maximizing the log-likelihood141

of the data given the parameters, which is written as142

arg max
Qt

∑
p∈Pt

ln(gLp,t(yp)), (1)

where Qt is the set of Ql,t for all links l of the network. This optimization problem may be143

challenging due to the high number of variables (number of links times number of parameters144

per link travel time distribution), coupled through the PDF of path travel times gLp,t. In the145

case of Gaussian link travel times, solving (1) amounts to simultaneously estimating the mean146

and the variance of every link in the network and is not formulated as a convex problem. To147

face this difficulty, we decouple the optimization into two separate subproblems (travel time148

allocation [16, 20] and parameter optimization), each of which is easier to solve on its own, and149

then iterate between these subproblems until converging to an (locally) optimal solution.150

If we knew how much time each probe vehicle drove on each link of its path (instead of just151

the total travel time), it would be easy to estimate the mean and standard deviation for each152

link in the network (sample mean and standard deviation of the link travel time observations).153

Since the sampling scheme only provides the total travel time on the path, we determine the154

most likely amount of time spent on each link (travel time allocation). Unfortunately, the most155

likely link travel times depend upon the link travel time parameters (µ and σ) that need to be156

estimated. This would appear to a chicken-and-egg problem, but there is a sound mathematical157

justification (hard EM) for iterating between these two steps. The link parameters are used to158

determine the most likely travel times and then the most likely travel times are used to update159

the parameters.160

161

Travel Time Allocation: To solve the travel time allocation problem, we assume that162

estimates of the link parameters Ql,t are available (and fixed). We specify lower bounds bl on163

the travel time allocated for each link l of the network to model the bounded speed of vehicles164

and ensure that a sensible solution is returned. For each observation p ∈ Pt, we maximize the165

log-likelihood of the travel times xl,p spent on each link l of the path, with the constraint that166

they sum to the path travel time yp. The optimization problem reads167

arg max
x

∑
l∈Lp

logN (xp,l; wp,lµl,t, wp,lσl,t)

s.t.
∑
l∈Lp

xp,l = yp

xp,l ≥ wp,lbl,∀l ∈ Lp,

(2)

where the minimum travel time wp,lbl is found using the minimum travel time bl on link l, scaled
by the fraction of link traveled wp,l, as introduced in item 5. The notation N (x; µ, σ) represents
the PDF of a Gaussian variable with mean µ and standard deviation σ, evaluated at x:

N (x; µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.
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Problem (2) is a (small scale) quadratic program (QP) [4] which can be solved analytically (see168

algorithm 1 for details). Note that if a vehicle travels faster than the maximum speed, the169

allocation problem is infeasible. The vehicle is considered as an outlier and the observation is170

discarded from the set of observations. We call Xl,t, the vector of allocated travel times for link171

l during time period t. Note that the travel times xp,l are scaled by the proportion of the link172

traveled, wp,l, before being added to the set of allocated travel times Xl,t.173

174

Parameter Optimization: Given Xl,t, the computation of the parameters Ql,t depends175

on the choice of the class of distribution chosen. In the case of Gaussian distributions, this com-176

putation is straightforward as µl,t and σl,t respectively represent the sample mean and standard177

deviation of Xl,t.178

179

Full Historic Arterial Traffic Algorithm: After initializing the parameters Ql,t for180

each link of the network, the algorithm iterates between allocating the travel times for each181

path in Pt and optimizing the link parameters given the allocated travel times in Xl,t. The182

convergence of the algorithm is checked by computing the log-likelihood after each iteration,183

which is guaranteed to increase at each iteration until convergence.184

2.2 Bayesian Real-time Traffic Estimation185

The parameters Ql,t learned by the historic model are used as prior information to estimate186

current traffic conditions via a Bayesian update (see [38] for more details on Bayesian statistics).187

In Bayesian statistics, parameters are considered as RVs and thus have a probability distribution.188

Here, we compute the probability distribution (known as posterior distribution) of the mean189

travel time (seen as a RV) given the allocated link travel times and a prior distribution on the190

mean travel time denoted f0.191

Let ∆t represent the duration between successive real time estimates. We run the algorithm192

at time t2 using the path data available for the current time window [t1, t2], with t1 = t2 −∆t.193

The duration ∆t between successive updates depends upon the amount of data available in194

real-time and should remain inferior to the duration of the historical time intervals. If the data195

volume is large, the model can be run up to every 5 minutes. Running the model more frequently196

will likely not increase the performance and may lead to estimates that fluctuate too much due197

in particular to the periodic dynamics associated with the presence of traffic signals [22, 23].198

For generic RVs X and Y with realization x and y, the notation f(x|y) is read “probability199

that X has the realization x given that Y has the realization y” and denotes the conditional200

probability of RV X given the observation of the RV Y . Let yl,t2 denote the set of travel times201

allocated to link l between t1 and t2. Using Bayes theorem, the posterior probability on the202

mean travel time µ̂l,t2 is proportional to the likelihood of the data times the prior:203

f(µ̂l,t2 |yl,t2 , σl,t) ∝ f(yl,t2 |µ̂l,t2 , σl,t)f0(µ̂l,t2), (3)

The symbol ∝ is read “is proportional to”. The proportionality constant is chosen such that204

the integral of µ̂l,t2 7→ f(µ̂l,t2 |yl,t2 , σl,t) on R is equal to one. At time t2, the Bayesian update205

determines the value of mean travel times µ̂l,t2 that maximizes the posterior probability.206

Assuming Gaussian link travel times, a natural choice for f0 is a Gaussian distribution207

(conjugate prior [38]). Since f0 represents prior information on the mean travel time, its mean208

is set to the historical mean µl,t and its standard deviation σ0; l,t is chosen to represent how209

much real-time condition can deviate from the historical values. Typically σ0; l,t is large to give210

more weight to real-time data as soon as they are in sufficient quantity. Because of the Gaussian211

prior, the allocated link travel times yl,t2 and the mean travel time µ̂l,t2 are jointly Gaussian212

and we compute the parameters of the posterior (Gaussian) distribution of µ̂l,t. In particular,213

we update the mean link travel times as the mean of the posterior distribution:214
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Algorithm 1 Travel time allocation algorithm. The core of the algorithm is contained in lines
11-15, which computes the total expected path variance (V ) and the difference between expected
and actual travel times (Z). With these two quantities, each link is allocated the expected link
travel time adjusted by some proportion of Z, where this proportion is computed using the link
variance divided by the total path variance. This procedure can lead to some links being allocated
a travel time below the minimum for that link. The set J is introduced to track the links with
initial allocated travel times below the lower bound and the main procedure is repeated by setting
the travel times for these links to the lower bound and optimizing with respect to the remaining
links. Note that the travel times are scaled by the proportion of the link traveled (line 19) before
being added to the set of allocated travel times Xl,t.

Require: t ∈ T is fixed to some particular time period.
1: for l ∈ L do
2: Xl,t = ∅ {Initialize allocated travel time sets to be empty.}
3: end for
4: for p ∈ Pt do {For all probe path observations.}
5: if

∑
l∈Lp

wp,lbl > yp then

6: Travel time allocation infeasible for this path. This means that the observation represented
travel that is considered faster than realistically possible, so the observation is considered
an outlier. Remove p from Pt.

7: else
8: J = ∅ {J contains all links for which the travel time allocation is fixed to be equal to the

lower bound.}
9: repeat

10: xp,l = wp,lbl,∀l ∈ J {For all links that had an infeasible allocation in the previous pass
through this loop, set the allocation to the lower bound.}

11: V =
∑

l∈Lp\J
wp,lσ

2
l,t {Calculate the path variance for the links not fixed to the lower

bound.}
12: Z = yp−

∑
l∈J

wp,lbl−
∑

l∈Lp\J
wp,lµl,t {Calculate the difference between expected and actual

travel time for the links not fixed to the lower bound.}
13: for l ∈ Lp do {Allocate excess travel time in proportion of link variance to path vari-

ance.}
14: xp,l = wp,lµl,t +

wp,lσ
2
l,t

V Z
15: end for
16: J = J ∪ {l ∈ Lp : xp,l < wp,lbl} {Find all links violating the lower bound.}
17: until xp,l >= wp,lbl, ∀l ∈ Lp
18: for l ∈ Lp do

19: Xl,t = Xl,t ∪
(
xp,l
wp,l

)
{Add the allocated travel time to Xl,t.}

20: end for
21: end if
22: end for
23: return Xl,t,∀l ∈ L

8



µ̂l,t =
σ2
0; l,t

σ2
l,t

Nl,t2
+ σ2

0; l,t

x+
σ2
l,t

σ2
l,t

Nl,t2
+ σ2

0; l,t

µl,t

where Nl,t2 is the number of travel times allocated to link l during the current time interval215

(t1, t2) and x is the sample mean of the allocated travel times yl,t2 .216

To summarize, the real-time estimation algorithm performs the travel time allocation on each217

probe observation and then uses the allocated travel times and the historical traffic parameters218

to perform a Bayesian update of the link parameters.219

The precise analysis of the performance of this model is out of the scope of this article.220

We refer the reader to the following references assessing the results of the Mobile Millennium221

project for more details [2, 17].222

3 Non-negative matrix factorization (NMF)223

In this section, we present Non-negative Matrix Factorization (NMF), which is used for ap-224

proximating network-level traffic states as positive sums of a limited number of global traffic225

configurations. NMF [31, 6, 33, 25, 9] is a particular type of matrix factorization, in the same226

domain as the well-known Principal Component Analysis (PCA) method and Locality Preserv-227

ing Projection (LPP). In all cases, given a set of multivariate n-dimensional data vectors placed228

in m columns of a n×m matrix X, matrix factorization decomposes the matrix into a product229

of a n× s loading matrix M and a s × m score matrix V , where s represents the dimensionality230

of the subspace to which we project the original data. Through this matrix decomposition,231

each n-dimensional data vector is approximated by a linear combination of the s columns of M ,232

weighted by the components in the corresponding column of V . We can regard all s column233

vectors in loading matrix M as a group of projection bases that are learned optimally to repre-234

sent the original data. The variable s is typically chosen to be significantly smaller than both235

n and m so that the obtained score matrix V forms a low-dimensional subspace projection of236

the network-level traffic states, on which we can perform further data analysis. The specificity237

of NMF is the enforced positivity of both the weights in V , and of the columns of M forming238

the NMF decomposition basis. This non-negativity therefore provides an approximation of the239

n-dimensional data vector by an additive combination of a set of learned bases. Furthermore,240

the NMF components forming the basis tend to be sparse, which leads leads to a part-based241

representation of the original data.242

243

A network-level traffic state is a vector of size equal to the number of links in the network,
where the ith entry corresponds to the traffic state on the ith link of the network. Arterial
networks are typically dense (numerous links and intersections) and the number of links in any
decent size network is often over a thousand links. Assuming that k samples of n-dimensional
network-level traffic states are stored as an n×k matrix X, NMF factorizes X as a product of a
non-negative n× s matrix M and a non-negative s×k matrix V which minimizes the Frobenius
norm of the reconstruction error between X and its factorized approximation MV . We recall
that the Frobenius norm of a matrix A ∈ Rn×m with entry on column i and line j denoted Ai,j
is defined as

||A||F =

√√√√ n∑
j=1

m∑
i=1

|ai,j |2

and is equal to the sum of the singular values of A. The matrix factorization problem reads:244

arg min
(M,V)

‖X−MV‖F s. t. M ≥ 0, V ≥ 0, (4)

9



where the inequalities M ≥ 0, V ≥ 0 represent the non-negativity constraints (each element of245

the matrices are non-negative). Training of NMF is implemented using multiplicative updates246

[31],fixing either M or V and updating the left following the KKT condition. The NMF cost247

function shown in equation (4) is not convex.However,fixing either M or V leads to a convex248

subproblem to solve. Multiplicative updates and other gradient based optimization procedure249

can not guarantee the global optimum of the NMF solution. Nevertheless, in data mining, local250

minimum is still enough to be useful. Given fixed M or V, the NMF objective is a convex251

optimization issue. The NMF projects the high-dimensional network-level traffic states on a252

s-dimensional subspace, which is spanned by the columns of M . According to equation (4), the253

column space of V corresponds to coordinates of network-level traffic states with respect to the254

learned set of bases in M . The column space of V forms a low-dimensional representation of the255

network-level traffic states. As mentioned in the introduction, each network-level traffic state256

Xj ∈ Rn is approximated by an additive linear superposition of the column space of M due to257

the non-negative constraint. The approximation of Xj is written258

Xj ≈
∑k

i=1
MiVi,j , (5)

where Mi denotes the ith column of M and Vi,j is the element at the ith column and jth row of259

V . It is important to interpret what the matrices M and V represent in terms of traffic analysis.260

The column space of M represents typical elements of the spatial configuration patterns with261

respect to the network-level traffic states. Based on the columns of M , we represent complex262

spatial arrangements of local traffic states over the entire network. As for V , equation (4)263

indicates that each element Vi,j represents to which degree the jth network-level traffic state264

observation is associated with the ith expanding basis in matrix M (ith spatial configuration).265

For example, if the spatial configuration formed by the ith column of M is the best representa-266

tion of the jth network-level traffic state, then Vi,j will take the largest value in the jth row of267

V [6]. As a result, the derived low-dimensional representation formed by the columns space of268

V are intuitively consistent with information about spatial distribution patterns of local traffic269

states. By contrast, the PCA and LPP based projections only aim at best reconstruction of270

traffic observations with either maximizing data variances or preserving neighboring structures.271

The projection results of PCA and LPP are thus less likely to be associated with interpretable272

latent traffic configuration patterns than the NMF. Therefore, we choose NMF to analyze the273

network-level traffic states in our case.274

275

In this article, the traffic states used for the clustering analysis are fluidity indices. A fluidity276

index is a value in [0, 1] computed as the ratio between the free flow and the estimated travel277

times. They are provided by the estimation algorithm described in Section 2 and operational in278

the Mobile Millennium [26] traffic platform, which receives data from a dozen of feeds totalling279

several millions of data points per day for Northern California traffic. The Mobile Millennium280

platform has been operational since November 2008 and has been storing historical data since281

then, providing a rich database of historical traffic dynamics in the Bay Area. In real-time,282

the model estimates travel times and fluidity indices from the streaming data and leverages the283

historical data using the Bayesian update presented in Section 2.2. The estimates are updated284

on each link of the network every five minutes. We focus our study on a network consisting285

of 2626 links for a duration of 184 days, from 00:00 May 1st 2010 to 23:55 October 31st 2010,286

totaling 52292 estimates per link (12 × 24 × 184). We store the fluidity index of each link at287

each time sampling step in a matrix X containing 2626 rows and 52292 columns. Our clustering288

results includes two parts, firstly we perform clustering on network-level traffic states, in order to289

find some typical spatial configurations of network-level traffic states, as described in Section 4.290

Secondly, we perform clustering on temporal trajectories of network-level traffic states, from291

which we can study traffic dynamics, shown in Section 6.292
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4 Congestion patterns: spatial configurations of global293

traffic states294

An important outcome of dimensionality reduction is to identify typical spatial congestion pat-295

terns (i.e. spatial configurations of congestion). While doing this on the original 2626 dimen-296

sional data would be rather sloppy and computer intensive, it is much more feasible in the low297

dimensional space obtained by NMF.298

NMF has one essential parameter: the number s of components over which decomposition299

is done. The parameter s also corresponds to the dimension of the target subspace where we300

perform clustering. The choice of s is empirical (s is called a meta parameter) and is done by301

analyzing results obtained for increasing values of s from 3 to 30. Our analysis focuses on the302

reconstruction error (value of the objective function (4) at optimum) and the clustering results.303

The reconstruction error continually decreases as the dimension s increases. This result is ex-304

pected as the optimization problem (4) is performed on a larger set and thus the factorization305

models with higher complexity always leads to better fitting to the original data. Our clustering306

of global traffic states consists of clustering the traffic data projected in the s-dimension sub-307

space using a k-means algorithm [34, 29]. The k-means algorithm is a widely used unsupervised308

clustering algorithm. It partitions observations into k clusters in which each observation belongs309

to the cluster with the nearest mean. We represent the clusters obtained in the s-dimensional310

space in three dimensions, limiting the number of NMF components to three but keeping the311

clustering results obtained in the s-dimensional space. We notice that values of s inferior to312

eleven lead to clustering results which seem visually inadequate: the 3D representation of the313

clusters shows important overlap between the clusters. The clusters become separated for val-314

ues of s greater than fifteen. Increasing s over 15 does not seem to bring any improvement in315

the clustering results, while it significantly increases the NMF computation and memory usage316

costs. Therefore, we set the number of NMF components to s = 15 for all subsequent analysis317

presented in this article. This value achieves a balance between the descriptive power of NMF318

projection and the computational efficiency.319

320

In clustering analysis, we also need to choose the number of clusters in k-means, denoted by321

k. The challenge is different from that for the choice of s: the choice of k does not influence the322

computational costs significantly but changes the interpretability of the results. The number of323

clusters represents the number of “global congestion patterns” that may arise. Too low values324

of k may not represent the different congestion patterns whereas too high values of k may325

decrease the possibilities of interpretation by separating similar congestion states into different326

clusters. After analyzing the results obtained for increasing values of k, it seems that the most327

insightful clustering is obtained with k = 5 clusters. The average fluidity index value (obtained328

by averaging index values on all links) are shown for each of the five clusters in the table at329

the top of figure 2. It appears that two clusters (cyan squares and green stars) correspond to330

different types of “mostly fluid” states, whereas the remaining three clusters (blue circles, yellow331

diamonds and red stars) represent “congested states”. We study the physical significance of each332

cluster by constructing histograms of the fluidity index values, counting occurrence frequencies333

of fluidity index values in each cluster. We find that fluidity index values in the night and early334

morning Free-Flow (NFF) and Evening Free-Flow (EFF) cluster are higher as a whole than those335

in the clusters corresponding to occurrences of congestion (Morning Increasing Congestion, MIC,336

Mid-Day Congestion, MDC and Afternoon Decreasing Congestion ADC clusters).337

Figure 2 shows that the significance of the distributional patterns with respect to evaluat-338

ing global traffic states is generally consistent with that of average fluidity index values, which339

implies that the average fluidity index value could also be used as an easy-to-use and efficient340

indicator of global traffic states in our case.341

342
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Marker symbol Average fluidity Cluster name

Green stars 0.7757 Night + early morning Free-Flow (NFF)

Blue circles 0.7185 Morning Increasing Congestion (MIC)

Red stars 0.6393 Mid-Day Congestion (MDC)

Yellow diamonds 0.6730 Afternoon Decreasing Congestion (ADC)

Cyan squares 0.7420 Evening Free-Flow (EFF)

Figure 2: The clustering shows an organization of global congestion states per time of the day. The table shows
the average fluidity values of each of the global state clusters. The figure shows the temporal evolution of global
congestion states, projected in the 3D-NMF space using different colors and symbols to represent the five different
clusters. The first and the last network estimates of the day are represented with a large star and a large circle
respectively.
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(a) Night Free-Flow (NFF) (b) Morning Increasing Congestion (MIC)

(c) Evening Free-Flow cluster (EFF) (d) Afternoon Decreasing Congestion (ADC)

(e) Mid Day Congestion (MDC)

Figure 3: Typical spatial configurations of traffic states for each of the five clusters. On each figure, we display
the links with fluid index values less than 0.7 (congested links). Most of the congestion occurs within the region
highlighted by the dashed circle, which is the downtown region of San Francisco. The NFF and EFF clusters have
a smaller number of links highlighted than the MIC, ADC and MDC clusters indicating the difference in congestion
levels. 13



As done in the primary analysis for the choice of s and for visualization purposes, we illustrate343

spatial layouts of the global traffic state distribution in 3D-NMF space (obtained by requesting344

3 components only instead of 15), but we apply the k-means clustering algorithm in the larger345

15-D NMF space. The physical interpretation of the five clusters is clear in Figure 2 in which346

we show all states projected in 3D-NMF, together with a typical temporal evolution trajectory347

of a single day. The whole trajectory is indicated by the blue line in Figure 2. The green star348

and red circle are the starting point and ending point of the trajectory,corresponding to traffic349

observations at 00:00 and 23:55 respectively. The temporal arrangements of the network-level350

traffic states along the trajectory underline the temporal interpretation of the five clusters: the351

green-star cluster corresponds to night and early morning free-flowing, from which typical day352

evolution goes into morning intermediate states (before 10:00) corresponding to the blue-circle353

cluster; mid-day congestion (red-star cluster) generally occurs between 10:05 and 15:00, and354

represents a clearly different congestion state in 3D-NMF space, with a sudden jump of traffic355

states from the blue-circle cluster to the red-star one, and sudden jump back into the after-356

noon intermediate state (yellow-diamond cluster) around 15:00. The traffic settles to a specific357

evening near-free-flow state from 18:00 to 23:55 (cyan-square cluster). Interestingly, both the358

projection of the global congestion states in 3D-NMF space and the clustering results in 15D-359

NMF show a clear distinction between morning and afternoon intermediate congestion states,360

and also between late evening and night/early-morning near-free-flow states.361

362

In Figure 3, we show traffic patterns corresponding to spatial configurations of congestion363

for centers of each of the five identified clusters. Each cluster center is derived by averaging all364

elements of the corresponding cluster, so as to indicate a representative spatial configuration of365

traffic states of each cluster. In this figure, we display the links with fluidity index values less366

than 0.7 (congested links) on the Google Map screenshots. Generally, most of congestion occurs367

within the regions highlighted by the dashed circle in figure 3(e). This region corresponds to368

the downtown region of San Francisco. Compared with the downtown region, the western and369

southern region of San Francisco are less likely to suffer from congestion (left and bottom part370

in the San Francisco road network). This analysis is very useful for traffic management cen-371

ters and public entities to understand the most important bottlenecks that cause heavy traffic372

conditions. Moreover, our results show that some of the major bottlenecks remain constant373

throughout the day whereas others evolve with the different traffic patterns of the day. This374

dynamical analysis can lead to specific management strategies to address this recurring conges-375

tion. As a matter of fact, in [13], we constructed a regression model to predict the global traffic376

dynamics based on the analysis results of the spatial congestion patterns. This work indicates377

the promising potentials of spatial congestion patterns in forecasting congestion and improving378

traffic management.379

5 Spatial decomposition of the road network380

Another motivation for using NMF in dimensionality reduction is its property to approximate381

original data by an additive linear combination of a limited set of “components” (a.k.a. NMF382

“basis”). Due to the non-negative constraints, spatial arrangements of the components are usu-383

ally sparse, which means that values in most regions of each basis are (close to) zero except384

several localized regions. These localized regions with large values correspond to typical pat-385

terns or representative components of the original signals (the global congestion states), and386

typically correspond to independent “parts” of the data. Therefore, NMF is often used to ex-387

tract part-based representation or latent semantic topics from the data in image processing or388

text classification. For example, when NMF is applied to image datasets, it automatically ex-389

tracts some part-based representation of the type of objects present in the images [31, 25, 9].390

We study this “part-based” representation of global congestion states to analyze the physical391
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significance of NMF components obtained on traffic data.392

For arterial traffic, the localized regions with distinctively large values in each NMF basis393

correspond to a group of links with highly correlated traffic states. In this section, we construct394

the localized components by selecting the links which represent the top 20% largest values in395

each basis and indicate their spatial locations using red legends in the road network. Figure 4396

shows several typical spatial arrangements of localized components, out of the fifteen arrange-397

ments learned during the NMF training. We notice that a component corresponds to streets in398

a localized West region (Figure 4(a)), and another to streets in the central region (Figure 4(b)),399

which could indicate that the traffic within each of these regions is highly correlated with each400

other whereas the traffic between distinct regions exhibits relatively independent behaviors.401

Such a characterization of independent regions of traffic dynamics is important to significantly402

reduce the computational costs of a large variety of estimation models, in particular estimation403

models based on graphical models [10, 18]. We could leverage this characterization in approx-404

imate inference algorithms to reduce the computational costs while maintaining an accurate405

representation of traffic dynamics and limiting the estimation error [5].406

Other NMF components highlight correlations of traffic in parallel directions: in Figure 4(c),407

a majority of the links of the NMF component are horizontally-oriented, wheras in Figure 4(d) a408

majority of the links are vertically-oriented. As we highlight in Figure 4(c) and Figure 4(d),the409

links concentrated within the downtown tend to be more consistent with the orientational pat-410

terns. These links with similar orientations are likely to have correlated traffic dynamical be-411

haviors, whereas traffic flows with orthogonal orientations have a less important impact on each412

other. These correlations properties can be used to learn the structure of the graphical model413

representing conditional independences between traffic states on the network (both spatially and414

temporarily).415

416

According to the physical representation of the NMF components, it seems that different417

NMF bases focus on different localized connected regions of the network. This could imply418

that NMF detects both strong correlation of traffic dynamics within each localized region and419

relative independence between these regions. However, this connectivity and localization of the420

components could be improved. Standard NMF does not guarantee connected nor localized421

components and the above promising results motivate us to investigate this physical represen-422

tation of spatial configuration of traffic states further. A possible approach is to modify the423

NMF algorithm in order to favor localized sparsity, which should help to unveil more distinct424

part-based network decomposition.425

6 Temporal analysis of global traffic states426

In this section, we analyze the daily dynamics of network-level congestion states projected in427

the NMF space. This analysis is important to understand how congestion forms and dissipates428

throughout the day. For each day in the studied period, we represent the trajectory of the429

network-level traffic states in the NMF space as the projection of the temporal sequence of the430

network-level traffic states from the beginning to the end of the day. The projections are linked431

together to form a solid curve representing the trajectory and we notice that trajectories are432

nearly closed in the NMF space. Note that for visualization purposes, the projection is done433

on the 3D-NMF space. Figure 5 (top) shows a typical day trajectory with successive temporal434

intervals along the trajectory plotted using different colors, to give an idea of the dynamics along435

the curve.436

437

It is noteworthy that over the 184 days of reconstructed traffic data, there are only, in438

3D-NMF projection, exactly seven different typical trajectories, as shown in figure 5 (center).439

Furthermore, our analysis shows that each one of these seven typical trajectories corresponds to440
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(a) “West Part” NMF component (b) “Central” NMF component

(c) “East-West transit” NMF component (d) “North-South transit” NMF component

Figure 4: Examples of interesting NMF components, either highlighting localized behavior (a and b), or flow-direction
correlations (c and d).
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Sunday Saturday Monday Tuesday Wednesday Thursday Friday

Figure 5: Daily trajectories of network fluidity indices projected in 3D-NMF space exhibit seven different typical
trajectories, representing the days of the week. Top: Example of a daily trajectory with coloring representing the
five different times of the day. Center: The seven different trajectories, representing a typical daily dynamic for each
day of the week. Bottom: Dendrogram representing the hierarchical clustering analysis of the daily trajectories.
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a particular day of the week and are thus called day trajectory patterns. Note that individual441

day trajectories for same day-of-week, although superposed in 3D-NMF, are slightly different442

one from another in 15D-NMF space, in which we perform clustering. Also, there are only two443

weekday holidays within the analyzed period, and they exhibit only small deviation from the444

ordinary same day-of-week. This may be a consequence of the estimation algorithms which does445

not use a holiday-specific model to process the historic data and fuse it with the real-time data.446

Differences between the different day trajectory patterns concentrate within the time inter-447

val corresponding to transitions between congestion states, in particular between the morning448

increasing congestion and the mid-day congestion and between the mid-day congestion and the449

evening decreasing congestion. Characterizing these specific time intervals that represent the450

differences in daily dynamics allows us to identify and/or predict different evolution patterns of451

traffic states and to develop mid-term or long-term traffic forecast [14, 13].452

453

In this data set, one complete evolution trajectory contains 288 sampling steps (estima-454

tions are performed every five minutes), which is represented by a 2626 × 288 matrix (the455

network has 2626 links). As for the previous sections, our analysis is done in 15-D NMF456

space (3-D space is only used for visualization purposes). Each trajectory is represented by457

a sequence of 288 network-level traffic state projected on the 15-D NMF space and denoted458

{h1, h2, · · · , h288}, where hi ∈ R15. To measure similarity between trajectories {ha1 , ha2 , . . . , ha288}459

and {hb1, hb2, . . . , hb288}, representing days a and b respectively, we calculate cosine distances be-460

tween the NMF projections at corresponding times of the day and sum the cosine distances over461

the different estimation times k = 1 . . . 288:462

D =
∑288

k=1
cosdis(hak, h

b
k), (6)

463

where cosdis(hak, h
b
k) = 1− hak · hbk

‖ hak‖ ‖ hbk‖
. (7)

The function cosdis is the cosine distance between two vectors and is defined in (7). It evalu-464

ates the cosine value of the angle between the two data vectors hak and hak in the 15-D NMF465

projection space. Larger cosine distance values indicate more important differences between466

the two vectors. Due to the mathematical definition of the cosine function, the derived cosine467

distance is normalized into the range [0,1]. Based on the defined distance measure between468

sequences, we can perform hierarchical clustering of daily traffic observation sequences in 15D-469

NMF space [29, 42]. The successive similarity-based groupings are shown on the dendrogram in470

Figure 5 (bottom) following the same color legends as in the middle figure. In the dendrogram,471

daily sequences of network-level traffic states are grouped gradually into clusters in the form of472

U-shaped trees. The height of each U-shaped tree (vertical axis) represents the distance between473

the sets of daily sequences being connected. Leaf nodes along the horizontal axis correspond474

to all daily sequences of network-level traffic states. We notice that at the bottom level of the475

hierarchical tree, daily sequences are first aggregated with respect to each day of the week. It476

underlines the intuition that each day of the week has a particular temporal dynamic pattern in477

terms of network-level traffic states. By increasing thresholds of distance settings, we trace back478

along the U-shaped trees towards its root. The seven days of the week are further clustered into479

four different groups indicating the days that tend to follow similar dynamic patterns. Weekend480

(Saturday and Sunday) are clustered together. As for the week days, Monday and Tuesday,481

representing the beginning of a week, appear to have a different temporal dynamic pattern from482

Wednesday and Thursday (middle of the week). Traffic dynamics on Fridays also tend to de-483

viate slightly from that of the other days and is assigned to a separate group. As the distance484

threshold increases, Friday is added to the Wednesday and Thursday cluster. Therefore, we can485

say that there are generally three kinds of temporal dynamic patterns of network-level traffic486

states in the data, corresponding to the beginning of the week (Monday and Tuesday), the end487
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of the week (Wednesday, Thursday and Friday) and weekends (Saturday and Sunday). If we488

increase the threshold even more, the two clusters of week days merge leading to two clusters489

representing the week-end days on one side and the week days on the other side. The distance490

thresholds need to be increased significantly more for these two clusters to merge, which indi-491

cates the importance in the differences in daily dynamics between week days and weekends. It492

is expected for Monday and Friday to have different dynamics (coming back or leaving for the493

week-end). However, it is slightly surprising that Monday and Tuesday are clustered together494

while Wednesday and Thursday (and then Friday) form another cluster. The data seems to495

indicate a beginning of the week vs. end of the week clustering, with Friday being the most496

different of the other days.497

7 Conclusion and discussion498

In this article, we have proposed and presented: (1) a probabilistic modeling framework for499

efficient estimation of arterial traffic conditions from sparse probe data; (2) a novel traffic data500

mining approach to analyze large-scale traffic patterns and dynamics.501

The proposed estimation method leverages massive amounts of historical data to learn sta-502

tistical distributions of travel times and fuses them with streaming data to produce real-time503

estimates of traffic conditions using a Bayesian update. The Bayesian framework allows us to504

properly weight the relative importance of the real time and the historical data (depending on505

the amount of data available in real time) to produce robust estimates, even when little data is506

available in real-time. This model is operational in the Mobile Millennium system and has been507

producing travel time and fluidity indices since March 2010 [2].508

The output of this estimation model is used as a first real-world platform for a new traffic509

data mining method using Non-negative Matrix Factorization to allow large-scale analysis of510

spatial and temporal traffic patterns. The principle is to perform dimensionality reduction,511

which allows for clustering of spatial congestion patterns, and easy analysis/categorization of512

temporal daily dynamics. Furthermore, the part-based decomposition feature of Non-negative513

Matrix Factorization automatically unveils areas of the road network with strong correlations.514

Current and future research focus on: (1) integrating traffic flow theory and statistical mod-515

els to have a more accurate modeling of traffic dynamics, both at the link [22, 23] and at the516

network [21] level in order to improve the estimation capabilities of the system; (2) modifica-517

tions of Non-negative Matrix Factorization sparsity constraint to favor geographically-localized518

components; (3) taking advantage of low-dimensional Non-negative Matrix Factorization repre-519

sentation for performing long-term traffic prediction [13].520
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