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Abstract— With the fast development of Geographic Infor-
mation Systems, visual global localization has gained a lot of
attention due to the low price of a camera and the practical
implications. In this paper, we leverage Google Street View
and a monocular camera to develop a refined and continuous
positioning in urban environments: namely a topological visual
place recognition and then a 6 DoF pose estimation by local bun-
dle adjustment. In order to avoid discrete localization problems,
augmented Street View data are virtually synthesized to render
a smooth and metric localization. We also demonstrate that this
approach significantly improves the sub-meter accuracy and the
robustness to important viewpoint changes, illumination and
occlusion.

I. INTRODUCTION

Accurate localization is a prerequisite for most au-

tonomous navigation and intelligent driving systems. Recent

advances in Geometric Information Systems (GIS), such

as Google Street View, Apple’s 3D Maps and Bing maps

[1], have brought a novel horizon to address the urban

localization. GIS become more and more precise and offer

a unified global representation of the world with visual,

topological, spatial and geographic information [2], [3] . This

triggers a boom of visual re-localization systems since it

is easy to deploy and affordable to apply. Rather than Si-

multaneous Localization and Mapping (SLAM), such visual

place recognition approaches dispense with a consistant map

building and can even render a global position directly when

GIS offer geodetic information.

However, the place recognition is still challenging for three

major reasons: First, the scene is difficult to identify due

to appearance changes caused by viewpoint, illumination,

occlusion and structure modifications. Also, an efficient

searching method is required to cope with abundant sources

in GIS. Third, re-localization is often limited at a topological

level by recognizing discrete scenes. A series of methods

has been proposed regarding to these three aspects in the

literature, like FABMAP [4] and SeqSLAM [5].

In [6], we presented a monocular urban localization

system, which pushes the conventional appearance-based

localization forward to the metric pose estimation by a graph

optimization process. The only input of this approach is

an image sequence from a monocular camera and Google

Street View. Moreover, it is not necessary to establish frame
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to frame correspondances, nor the odometry estimates. Al-

though a considerable proportion of localization achieves in a

2m accuracy, the discontinuity and drifts still disturb the ro-

bustness of the system. We showed that a Street View located

far away from the query image (> 8m in the test) generates

a significant error in the metric pose estimation phase. The

main contribution of this paper is thus an extension of our

former framework with the construction of augmented Street

Views database that compensates the sparsity of Street Views

and improves the localization precision, see in Fig. 1.
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Fig. 1. The output from a single localization run using original Street Views
and synthesizing virtual views: The trajectories obtained with/without virtual
views are plotted in green/blue respectively. The ground truth in red line is
recorded by a centimeter-level real-time kinematic GPS (RTK-GPS).

A city-scale Street View database is already too immense

to deal with. Therefore, a reasonable way to augmenting

virtual views is required and we should also consider how

to efficiently render virtual views from the original GIS

database, how to encode and index the whole database, and



how many virtual views to be generated.

To address these issues, we adopt Google Street View

as our original database for its world-wide coverage, public

accessibility, high resolution geo-referenced panoramas and

well-calibrated depth maps. Panoramas and their associated

depth maps are used to render virtual views. Instead of

synthesizing views in a dense sample grid surrounding

candidate panoramas, we only synthesize views between con-

secutive panoramas according to prior topology information.

In this way, obtained virtual views are thus located along

the vehicle trajectory with known absolute positions. The

coarse topological localization is realized by a Bag-of-Word

(BoW) based place recognition algorithm, i.e., the query

image, captured by a camera-equipped vehicle, is associated

with geotagged Street View images when they share high

appearance similarities. Then these Street View candidates

as well as their virtual views, are fed to a graph optimization

process by a Perpective-n-Point (PnP) algorithm [7]. The

vehicle’s 6 DoF transformation can be computed from it. As

the GPS coordinates of Street Views are known, the vehicle’s

global localization can be obtained directly. In the exper-

iments, we show that this approach significantly improves

the positioning accuracy, continuity and the robustness to

important viewpoint changes, illumination and occlusion.

II. RELATED WORK

Visual localization has received a significant attention

in the robotics and computer vision community. It can be

divided into topological methods which realize localization

using a collection of images or places; and metric methods

which estimate a precise pose relative to a map. In the lit-

erature, topological localizers focus on robust performances

in different scenarios, such as large-scale environments [8],

large viewpoint changes [9] and cross-season or illumination

variations [3], [10]. Instead, metric localizers work mostly in

the fashion of visual odometry (VO) and SLAM [11]. They

construct frame-to-frame correspondances and a data fusion

scheme to guarantee the continuity of the localization.

Today more and more researchers develop localization

systems by using GIS data, such as available maps [12],

street network layout [13], geotagged traffic signs [14],

satellite images [15] and 3D texture city models [16]. They

utilize one of the above sources as a constraint to optimize

their localization within a VO or SLAM framework. For

instance, Agarwal et al. [17] developed an urban localization

with a sub-meter accuracy by modeling a two-step non-linear

least squares estimation. They first recover 3D points position

from a mono-camera sequence by an optical flow algorithm

and then compute the rigid body transformation between

Street Views and the estimated points. Alternatively, our

coarse-to-fine localizer considers the entirety of topo-metric

information in the GIS and construct a metric localization

out of the conventional fusion based techniques. The work

is inspired by Majdik et al.[16], who leverage Street Views

as a geo-referenced image collection to topologically localize

a micro aerial vehicle (MAV) and then refine the result by a

pose estimation with 3D cadastral models. Considering the

query images from a MAV, an important issue is the ground-

aerial image matching under big viewpoint changes. But for

an urban vehicle localization, query images capture more

repetitive scenes along the trajectory which ask for a more

robust place recognition algorithm.

As demonstrated in our former work [6], a metric local-

ization without frame-to-frame correspondances introduces a

severe discontinuity and drifts. Thus we propose to generate

virtual views from original Street View database to address

this problem. In general, synthesizing virtual views is mainly

used for image matching under extreme viewpoint changes

[18], scene registration from a given 3D construction [19],

and image descriptor association with laser scans [20]. Torri

et al. [10] show that dense sampled virtual views enable true

24/7 place recognition across major illumination changes.

In our work, virtual views are rendered by fixing the virtual

camera on the subsection between two closest panoramas. In

Google Street View, the average distance between consecu-

tive panoramas is around 6 to 16m. Relying on synthesis

virtual views, this discrete distance can be reduced within 2
to 5m.

III. METHOD

In this section, we describe our localization algorithm in

detail. As illustrated in Fig. 2, the system is divided in

two phases: in the offline stage, 4 useful datasets are ex-

tracted from Street View, including topology, geo-coordinate,

panorama and associated depth map. We pre-process every

panorama by rendering rectilinear images from its camera

locus and at same time by generating virtual views deviat-

ing away from that locus. All rectilinear images are used

to build a dictionary by a BoW algorithm. In the online

stage, for every query image, we retrieve its most similar

rectilinear images (namely referenced images in Fig. 2) from

the dictionary. Once referenced images are founded, their

neighboring virtual views are also used to construct 3D-to-

2D transformation constraints. The global metric localization

is obtained by a local bundle adjustment [21] on all the

constraints. More technical details are given in the following

sections.

A. Preprocessing for Augmented Street View

Google Street View is a planet-scale GIS with billions of

panoramic imagery and depth maps (see Fig. 3). They can

be publicly accessed by parsing online browsable metadata.

Every panorama is stitched by perspective images from a R7

camera system [22]. This system is a rosette of 15 cameras

with 5-megapixel CMOS sensors. It enables to register a

panorama with a 13, 312×6, 656 pixel resolution by captur-

ing a 360◦ horizontal and 180◦ vertical field-of-view (FoV).

More importantly, all panoramas are geotagged with accurate

GPS coordinates and cover the street in a nearly uniform way.

The topological information of a panorama is given by the

global yaw angle α, which measures the rotation angle in

clockwise direction around the R7 system locus relative to

the true north. The associated depth map stores the distance

and orientation of various points in the scene coming from



laser range scans or optical flow methods. It only encodes

the scene’s structural surfaces by their normal directions

and distances, allowing to map building façades and roads

while ignoring smaller dynamic entities. In fact, the GPS

position of Street View is highly precise due to a careful

global optimization, while the depth map provides a coarse

3D structure of the scene with a relatively low accuracy. For

this reason, we neglect ineffective pixels with a more than

200m depth.
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Fig. 2. Flowchart illustrates workflows between different modules.

Panoramas differ from our mono-camera images in both

size and visual appearance. To succeed in the metric local-

ization, we carry out two processings: First, panoramas must

be transformed into a set of overlapping or unrelated cutouts

(rectilinear images) to reduce the large angle distortion. We

build a back-projection model by standard ray tracing with

bilinear interpolation to realize a more robust and flexible

extraction, see details in [6]. We assume 8 virtual pinhole

cameras with the camera matrix K are mounted in the

centre of a unit sphere S with a user fixed pitch δ and

heading ζ, local yaw angle η changing by [0◦, 45◦, ..., 360◦]
. The number of virtual cameras, intrinsic matrices and

heading/pitch/yaw angles are free to select, yet empirically

the more identical they are to the actual on-board camera, the

better performance expected. Suppose a 3D point M ∈ R
3

defined in the sphere coordinates S at point O, it can be

projected directly on a virtual camera image plane I(m) with

a pixel value interpolated from m.

m = K
R1(δ, ζ, η)M

z(R1(δ, ζ, η)M)
=





f 0 u0

0 f v0
0 0 1





R1(δ, ζ, η)M

z(R1(δ, ζ, η)M)

(1)

with the focal length f and the principal point(u0, v0). We

choose the convention that the z axis is the optical axis

and normalize rotated 3D points to the unit plan (z = 1).

These intrinsic parameters are fixed according to our on-

board camera. The camera extrinsic matrix is deduced from

the above configuration, namely the local heading/pitch/yaw

setup. R1 returns a rotation matrix through the Rodrigues’

formula.
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Fig. 4. A virtual panorama at centre point O
′

is constructed from the
original panorama at point O.

Second, instead of fixing virtual cameras in the centre of

a unit sphere to get rectilinear images, the camera position

of new virtual views is translated along the Google segment

corresponding to our trajectory, see Fig. 4. In the test, we

generate virtual views from a panorama in both forth and

back directions. Inaccurate or missing depth information

naturally causes artifacts and absent pixels, for example, sky

pixels often disappear. Rendering virtual views from multiple

panoramas can potentially improve quality of virtual views.

However, in our experiments, we only use a simple synthe-

sizing process since artifacts are usually located in moving

objects, such as vehicles or pedestrians, which never appear

in our own query images. Our compact preprocessing enables

every panorama to have two synthesized virtual panoramas

in its neighborhood. Then rectilinear virtual views can be

obtained from virtual panoramas via back-projection model.

After the artificial generation, the Street View database is

augmented with the created views and becomes nearly 10

times larger in quantity.

The rendering pipeline is stated in the following: For every

pixel in a virtual panorama, a ray is cast from the centre of a

virtual camera and intersect it with the planar 3D structure of

its close panorama. The intersection is then projected back to

spheric panorama and the depth map is updated according to

the transformation. Then, using the back-projection model,

we extract rectilinear virtual views from virtual panorama.

Pixel values are rendred by bilinear interpolation.

As depicted in Fig. 4, we translate an original panorama S

located at point O to the virtual panorama S
′

at point O
′

. The



Fig. 3. An example of Street View panorama (top-left) and its associated depth map (top-right) at location [48.799133, 2.127752] in Versailles, France.
The below 8 rectilinear images and depth maps are extracted from the above ones by the back projection. The 8 virtual pinhole cameras are configured
similarly to the vehicle’s camera, including the same focal length and image size. It creates overlapping views.

translation t is realized along the trajectory direction with a

global yaw angle α. Here, t is denoted in a east-north-up

world coordinates W by:

t =





l sin(α)
l cos(α)

1



 (2)

with l as the distance between two panoramas as OO
′

. Also,

the 3D point M is defined in the sphere coordinates at point

S as:

M =









d cos(θ) sin(φ)
d sin(θ) sin(φ)

d cos(φ)
1









(3)

where (θ, φ, ρ) is a spherical parametrization and d is the

depth information. Therefore, the point M can be projected

to m
′

on a unit sphere S
′

by transforming to the coordinates

of point O
′

:

m
′

=
M + R2(α)t

‖M + R2(α)t‖
(4)

where ‖M + R2(α)t‖ is the updated depth d
′

and R2 is

the rotation matrix deduced from the global yaw angle.

Thus R2(α)t describes the relative translation between two

panoramas. The pixel values at m
′

will be as the same as

that at m if satisfying d
′

> 0. Then, rectilinear virtual views

are registered by the former back-projection model. In order

to lessen the influence of absent pixels, we create 12 virtual

pinhole cameras to capture more details in virtual views for

a good matching. Fig. 5 shows a generation example of two

virtual views from a panorama along its topology.

B. Coarse to Fine Localization

For clarity, we briefly review the coarse-to-fine localization

system that we proposed in [6]. We feed histogram equal-

ized [23] synthesis views into a BoW training system by

combining their SIFT and MSER descriptors. A K-means

clustering is used to group useful descriptors as visual words

in a dictionary. Next we represent input query images by

Fig. 5. Illustration of virtual views synthesized and back-projected from
the original Street View panorama at location [48.799133, 2.127752].
The location of the rectilinear Street View, and the 4m forward and
backward virtual views are colored respectively in red, orange and blue.
The black arrows indicate the virtual camera view directions. Missing depth
information causes null pixels in the virtual view ♯1.

histograms of visual words. Term Frequency-Inverse Doc-

ument Frequency (TF-IDF) reweighing is used to remove

redundancy in histograms and an efficient cosine similarity

distance metric is computed to retrieve the most similar

referenced images w.r.t query images. We also explore the

inner correlation in the dictionary to speed up the retrieving

efficiency.

Then, we construct our metric localization by building

constraints existing among an input query image, its most

similar referenced image and several Street View images

analogous to this referenced image. Constraints are con-

structed by an inlier 3D-to-2D matching via simple SIFT

descriptors. We finally obtain the metric pose and global

position in a g2o optimization framework [24]. The 6 DoF

pose of the vehicle Θ = (R, t), parametrized in Lie algebra

SE (3), is computed by minimizing the reprojection error



under matching constraints:

Θ⋆ = argmin
Θ

∑

i

π (‖mi − P (Mi,Θ)‖) (5)

where π is a M-estimator based on Tukey Biweight function

[25] and P (Mi,Θ) is the image projection from the scene

point Mi. The 3D-to-2D correspondence is improved by a

RANSAC alogorithm.

In our new method presented here, we still follow the

coarse to fine fashion. However, we only establish constraints

among an input query image, its most similar referenced

image and corresponding synthesized virtual views. It seems

that we reduce the number of constraints but in fact closer

virtual views can bring stronger constraints to improve the

optimization result. In the experiments, we show that the

metric location works well even if conventional SIFT/SURF

descriptors are used.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In the test, we evaluated our system on several streets

at the city center of Versailles, France. All query images

were captured in grayscale by a MIPSee camera, with a

57.6◦ FoV and a 20 frame-per-second frequency, mounted

on the vehicle. Only one-side of city façades was captured.

The localization ground truth was recorded by a RTK-GPS

coupled with a high-accuracy IMU. The intrinsic parame-

ters of virtual cameras and correponding rotation matrices

R1(δ, ζ, η) were fixed according to our own MiPSee camera.

In order to qualify the metric accuracy, we only selected

localization runs when the RTK-GPS reached a below-to-

20cm precision. A test example is illustrated in Fig. 1. In

this test, our vehicle acquired 1046 query images along a

498m trajectory where 28 Google panoramas exist. For every

panorama, we generated its virtual views both its forward and

backward virtual views.

A. Translation Distance Evaluation

The localization accuracy decreases with the increase

of the distance to its referenced Street View. Thus, the

translation distance l must be chosen carefully. The main

criteria to fix the distance between a panorama and virtual

views depends on the following aspects:

• Null pixels and artifacts will be produced if the synthe-

sized views are far away from the rendered panorama.

Normally, the farther they are, the more pixels are lost.

Consequently, our following metric localization will be

influenced significantly.

• We use the global yaw angle to determine of the seg-

ment we are traveling on in the topology. Nevertheless,

a long translation distance will generate virtual views

out of the current street, especially at some narrow

crossroads where multiple panoramas meet together.

Synthesizing views in such cases is not useful.

• Also, we expect that the final augmented Street View

can achieve a uniform distance between every consec-

utive views’ positions. If the translation distance is too

small, uniformity can hardly be realized.

We tried several translation distances along the same

trajectory in order to find an ideal choice. The geodetic

locations were plotted to measure their uniformity. Table

I shows the evaluation results. When the translation was

fixed to 4m, as shown in Fig. 1 and Fig. 5, we acquired

a compact and uniform distribution of geo-tagged virtual

views. After discarding virtual cameras located in buildings,

we synthesized 53 virtual panoramas in total. In order to

reduce the effects of null pixels existing in virtual views, we

fixed 12 virtual cameras to back project virtual panoramas to

rectilinear virtual views. Finally, 53 ∗ 12 synthesized views

were added to the Street View database.

(a) (b)

(c) (d)

Fig. 6. 4 close-up views of the localization result.

B. Robustness & Accuracy of Localization

Once the augmented database was constructed, the global

urban localization could be realized according to our pro-

posed method. Fig. 1 shows an overview of two localization

estimated respectively by original and augmented Street

Views, and their 4 close-up views from Fig. 1 are provided in

Fig. 6. As we proved, the performance of metric localization

depends on the distance between the query image and the

Street View retrieved in the topological localization. Along

the whole trajectory, we only plotted the localization when

topology localization reached in a 4m accuracy.

Translation distance 2m 4m 6m 8m
Invalid camera position 0 3 11 27
Uniform distribution N Y Y N

Ratio of virtual views with null pixels 0 0.125 0.5 1

TABLE I

EVALUATION OF THE TRANSLATION DISTANCE.

As can be seen from Fig.1, our approach generally works

more smoothly and accurately than the localization without

virtual views. The path estimated by augmented Street View



Street ViewQuery Image Query Image Virtual View

SIFT SIFTInlier Ratio = 0.58 (540/926) Inlier Ratio = 0.74 (781/1053)

Fig. 7. The same query image is matched with highly similar Street View retrieved by the BoW and with corresponding virtual view. The FLANN based
matches are displayed in red and geometrically verified matches are shown in green. The inlier ratio is measured by proportion of geometrically verified
matches.

Original Street View Augmented Street View

Continuity 137/1046 281/1046
Average Error 3.82m 3.19m
Ratio in [0m, 1m[ 21.89% 41.28%
Ratio in [1m, 2m[ 28.47% 27.40%
Ratio in [2m, 3m[ 44.53% 19.22%
Ratio in [3m, 4m] 5.11% 12.10%

TABLE II

EVALUATION OF THE LOCALIZATION PERFORMANCE.

is much closer to the ground truth. Virtual Street Views

can reduce the accumulative drifts effectively when the

vehicle is far away from original panorama, prevent that the

localization jumps back while the vehicle is moving forward,

make the localization path smoother and longer, see Fig. 6(a)
to Fig. 6(d) respectively.

Further, we quantify the performance by using several

statistic terms as calculated in Table II. First, we define the

continuity as a term to evaluate how many query images can

be located within a 4m accuracy after the metric localization.

We calculated their average error regarding to the ground

truth during the whole run. As seen from table, the average

accuracy of localization improves a lot and nearly 68.68% of

used query images can reach in an error interval [0m, 2m[. In

contrast, most localization precision stays in [2m, 4m[ using

original Street View.

Additionally, we analyzed the 3D-2D matches between

these localized query images w.r.t their Street View and

virtual views, see Fig. 7. In the literature, virtual views are

often used to improve matching under extreme viewpoint

changes. In our former work, we adopted a complex Virtual

Line Descriptor (kVLAD) [26] to determine the inlier feature

point correspondances when query image was far away

from Street View. In the test, we found augmented virtual

views can reduce the viewpoints changes and increase inlier

matches between query and referenced images as well. After

using virtual views, inliers of matches increase significantly.

Thus we can simply use SIFT to deal with large viewpoints

and illumination changes and reduce the computation cost as

well.

V. CONCLUSIONS

We have presented a new method to improve the local-

ization accuracy of a coarse-to-fine approach using Google

Street View imagery augmented with synthesized views.

Instead of densely sampling the images, we take advantage

of the topological information to render useful virtual views

in a very sparse way, which enables to lighten the opti-

mization burden and to use simpler descriptors to extract

the constraints. These augmented virtual views also allow

the system to be more robust to illumination, occlusion

and viewpoint changes. We experimentally show that an

augmented Street View based monocular localization system

works more accurately, smoothly and compactly than direct

using the original database.
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[8] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham, T. Pylvä,
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