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Abstract

Reinforcement Learning (RL) aims at learning an opti-
mal behavior policy from its own experiments and not rule-
based control methods. However, there is no RL algorithm
yet capable of handling a task as difficult as urban driv-
ing. We present a novel technique, coined implicit affor-
dances, to effectively leverage RL for urban driving thus in-
cluding lane keeping, pedestrians and vehicles avoidance,
and traffic light detection. To our knowledge we are the first
to present a successful RL agent handling such a complex
task especially regarding the traffic light detection. Further-
more, we have demonstrated the effectiveness of our method
by winning the Camera Only track of the CARLA challenge.

1. Introduction

Urban driving is probably one of the hardest situations
to solve for autonomous cars, particularly regarding the
interaction on intersections with traffic lights, pedestrians
crossing and cars going on different possible lanes. Solv-
ing this task is still an open problem and it seems compli-
cated to handle such difficult and highly variable situations
with classic rules-based approach. This is why a significant
part of the state of the art in autonomous driving [20, 4, 5]
focuses on end-to-end systems, i.e. learning driving policy
from data without relying on hand-crafted rules.

Imitation learning (IL) [28] aims to reproduce the behav-
ior of an expert (a human driver for autonomous driving) by
learning to mimic the control the human driver applied in
the same situation. This leverages the massive amount of
data annotated with human driving that most of automotive
manufacturer and supplier can obtain relatively easily. On
the other side, as the human driver is always in an almost
perfect situation, IL algorithms suffer from a distribution
mismatch, i.e. the algorithm will never encounter failing
cases and thus will not react appropriately in those condi-
tions. Techniques to augment the database with such failing

cases do exist but they are currently mostly limited to lane
keeping and lateral control [1, 34].

Deep Reinforcement Learning (DRL) on the other side
lets the algorithm learn by itself by providing a reward sig-
nal at each action taken by the agent and thus does not suffer
from distribution mismatch. This reward can be sparse and
not describing exactly what the agent should have done but
just how good the action taken is locally. The final goal of
the agent is to maximize the sum of accumulated rewards
and thus the agent needs to think about sequence of actions
rather than instantaneous ones. One of the major drawbacks
of DRL is that it can need a magnitude larger amount of data
than supervised learning to converge, which can lead to dif-
ficulties when training large networks with many parame-
ters. Moreover many RL algorithms rely on a replay buffer
[21, 25, 12] allowing to learn from past experiments but
such buffers can limit the size of the input used (e.g. the size
of the image). That is why neural networks and image size
in DRL are usually tiny compared to the ones used in su-
pervised learning. Thus they may not be expressive enough
to solve such complicated tasks as urban driving. Therefore
current DRL approaches to autonomous driving are applied
to simpler cases, e.g. only steering control for lane keeping
[18] or going as fast as possible in racing games [24, 16].
Another drawback of DRL, shared with IL, is that the al-
gorithm appears as a black box from which it is difficult to
understand how the decision was taken.

A promising way to solve both the data efficiency (par-
ticularly for DRL) and the black box problem is to use
privileged information as auxiliary losses also coined affor-
dances in some recent papers [2, 31]. The idea is to train
a network to predict high level information such as seman-
tic segmentation maps, distance to center of the lane, traffic
light state etc... This prediction can then be used in sev-
eral ways, either by a classic controller as in Sauer et al.
[31], either as auxiliary loss helping to find better features
to the main imitative task loss as in Mehta et al. [23] or also
in a model-based RL approach as in the really recent work
of Pan et al. [26] while also providing some interpretable
feedback on how the decision was taken.
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In this work, we will present our RL approach for the
case of end-to-end urban driving from vision, including
lane keeping, traffic light detection, pedestrian and vehi-
cle avoidance, and handling intersection with incoming traf-
fic. To achieve this we introduce a new technique that we
coin implicit affordances. The idea is to split the training
in two phases: first an encoder backbone (Resnet-18 [11])
is trained to predict affordances such as traffic light state
or distance to center of the lane. Then the output features
of this encoder is used as the RL state instead of the raw
images. Therefore the RL signal is only used to train the
last part of the network. Moreover the features are used
directly in the replay memory rather than the raw images,
which corresponds to approximately 20 times less memory
needed. We showed our method performance by winning
the “Camera Only” track in the CARLA Autonomous Driv-
ing Challenge [30]. To our knowledge we are the first to
show a successful RL agent on urban driving, particularly
with traffic lights handling.

We summarize our main contributions below:

• The first RL agent successfully driving from vision in
urban environment including intersection management
and traffic lights detection.

• Introducing a new technique coined implicit affor-
dances allowing training of replay memory based RL
with much larger network and input size than most of
network used in previous RL works.

• Extensive parameters and ablation studies of implicit
affordances and reward shaping.

• Showcase of the capability or our method by winning
the “Camera Only” track in the CARLA Autonomous
Driving Challenge.

2. Related Work
2.1. End-to-End Autonomous Driving with RL

As RL relies on trial and error, most of RL works applied
to autonomous cars are conducted in simulation both for
safety reasons and data efficiency. One of the most used
simulator is TORCS [36] as it is an open-source and simple
to use racing game. Researchers used it to test their new
actor-critic algorithm to control a car with discrete actions
in Mnih et al. [24] and with continuous actions in Lillicrap
et al. [21]. But as TORCS is a racing game, the goal of those
works is to reach the end of the track as fast as possible and
thus does not handle intersections nor traffic lights.

Recently, many papers used the new CARLA [7] simula-
tor as an open-source urban simulation including pedestri-
ans, intersections and traffic lights. In the original CARLA
paper [7], the researchers released a driving benchmark
along with one Imitation learning and one RL baseline. The

RL baseline was using the A3C algorithm with discrete ac-
tions [24] and its results were far behind the imitation base-
line. Lang et al [20] used RL with DDPG [21] and contin-
uous actions to fine-tune an imitation agent. But they rely
mostly on imitation learning and do not explicitly explain
how much improvement comes from the RL fine-tuning.
Moreover they also do not handle traffic lights.

Finally, there are still only few RL methods applied in a
real car. The first one was Learning to Drive in a Day [18]
in which an agent is trained directly on the real car for steer-
ing. A really recent work [37] also integrates RL on a real
car and compares different ways of transferring knowledge
learned in CARLA in the real world. Even if their stud-
ies are really interesting, their results are preliminary and
applied only on few specific real-world scenarios. Both of
these works only handle steering angle for lane keeping and
a large gap has to be crossed before reaching throttle and
steering control simultaneously in urban environment on a
real car with RL.

2.2. Auxiliary Tasks and Learning Affordances

The UNREAL agent [15] is one of the first articles to
study the impact of auxiliary tasks for DRL. They showed
that adding losses such as predicting incoming reward could
improve data efficiency and final performance on both Atari
games and labyrinth exploration.

Chen et al. [2] introduce affordance prediction for au-
tonomous driving: a neural network is trained to predict
high level information such as distance to the right, cen-
ter and left part of the lane or distance to the preceding car.
Then they used those affordances as input to a rule-based
controller and reached good performance on the racing sim-
ulator TORCS. Sauer et al. upgraded this in their Con-
ditionnal Affordance Learning [31] paper to handle more
complicated scenarios such as urban driving. In order to
achieve that they also predict information specific to urban
driving such as the maximum allowed speed and the incom-
ing traffic light state. As Chen et al. they finally used those
information in a rule-based controller and showed their per-
formance in the CARLA benchmark [7] for urban driving.
Both of those works do not include any RL and rely on rule-
based controller. Just after, Mehta et al. [23] used affor-
dances as auxiliary tasks to their imitation learning agent
and showed it was improving both data efficiency and final
performance. But they do not handle traffic lights and rely
purely on imitation.

Finally, there are two really recent articles closely re-
lated to ours. The first one by Gordon et al [10] introduced
SplitNet on which they explicitly decompose the learning
scheme in finding features from perception task and use
these features as input to their model-free RL agent. But
their scheme is applied to a completely different task, robot
navigation and scene exploration. The second one by Pan



Figure 1. Sample of traffic light image (left is US, right is EU).

et al. [26] train a network to predict high-level information
such as probability of collision or being off-road in the near
futures from a sequence of observations and actions. They
use this network in a model-based RL scheme by evaluating
different trajectories to finally apply the generated trajectory
giving the lowest cost. However, they use a model-based
approach and do not handle traffic light signal.

3. The CARLA Challenge
The CARLA Challenge [30] is an open competition for

autonomous driving relying on the CARLA simulator. This
competition addresses specifically the problem of urban
driving. The goal is to drive in unseen maps from sensors to
control, ensuring lane keeping, handling intersections with
high level navigation orders (Right, Left, Straight), han-
dling lane changes, pedestrians and other vehicles avoid-
ance and finally handling traffic lights US and EU at the
same time (traffic lights are positioned differently in Eu-
rope and in US, see Figure 1). This is much more challeng-
ing than the original CARLA benchmark [7]. The CARLA
Challenge consists in 4 different tracks with the only dif-
ference being the sensors available, from cameras only to
a full stack perception. We will only handle the “Camera
Only” track there, in fact we even used only a single frontal
camera for all this work.

4. Method
In this section we describe our general approach (RL

setup, reward shaping and network architecture). In the next
section, we describe what adaptations are needed to make
this approach usable in an autonomous driving context.

4.1. RL Setup: Rainbow-IQN Ape-X

There are two main families of model-free RL: value-
based and policy-based methods. We choose to use value-
based RL as it is the current state-of-the-art on Atari [12]
and is known to be more data efficient than policy-based
method. However, it has the drawback of handling only dis-
crete actions. Making a comparison between value-based
RL and policy-based RL (or actor-critic RL which is a sort

Figure 2. Desired speed according to environment. The desired
speed adapts in function of the situation, getting lower when arriv-
ing close to a red light, going back to maximum speed when traffic
light goes to green and again getting lower when arriving behind
an obstacle. The speed reward is maximum when the vehicle speed
is equal to the desired speed.

of combination of both) for Urban driving is out of the scope
of this paper but would definitely be interesting for future
work. We started with our open-source1 implementation
of Rainbow-IQN Ape-X [12, 6, 13] (for Atari originally)
taken from our previous work [33]. We removed the duel-
ing network [35] from Rainbow as we found it was leading
to same performance while using much more parameters.
The distributed version of Rainbow-IQN was mandatory for
our usage: CARLA is too slow for RL and cannot generate
enough data if only one instance is used. Moreover this al-
lowed us to train on multiple maps of CARLA at the same
time, generating more variability in the training data, better
exploration and providing an easy way to handle both US
and EU traffic lights (some town used in training were US
while others were EU).

4.2. Reward Shaping

The reward used for the training relies mostly on the
waypoint API present in the latest version of CARLA
(CARLA 0.9.X). This API allows to get continuous way-
points position and orientation of all lanes in the current
town. This is fundamental to decide what path the agent has
to follow. Moreover, this API provides the different possi-
bilities at each intersection. At the beginning of an episode,
the agent is initialized on a random waypoint on the city,
then the optimal trajectory the agent should follow can be
computed using the waypoint API. When arriving at an in-
tersection, we choose randomly a possible maneuvre (Left,
Straight or Right) and the corresponding order is given to
the agent. The reward relies on three main components: de-
sired speed, desired position and desired rotation.

The desired speed reward is maximum (and equal to 1)
when the agent is at the desired speed, and linearly goes
down to 0 if the agent speed is lower or higher. The de-
sired speed, illustrated on Figure 2, is adapting to the sit-
uation: when the agent arrives near a red traffic light, the
desired speed goes linearly to 0 (the closest the agent is

1https://github.com/valeoai/rainbow-iqn-apex



Figure 3. Lateral distance and angle difference for lateral and angle
reward computation. The difference is measured between the ideal
waypoint (in green) and the current agent position (in red).

from the traffic light), and goes back to maximum allowed
speed when it turns green. The same principle is used when
arriving behind an obstacle, pedestrian, bicycle or vehicle.
The desired speed is set to a constant maximum speed (here
40km/h) on all other situations.

The second part of the reward, the desired position, is in-
versely proportional to the distance from the middle of the
lane (we compute this distance using the waypoints men-
tioned above). This reward is maximum equal to 0 when
agent is exactly in the middle of the lane and goes to -1
when reaching a maximum distance from lane Dmax. When
the agent is further than Dmax, the episode terminates. For
all our experiments, Dmax was set to 2 meters: this is the
distance from the middle of the lane to the border. Other
termination conditions are colliding with anything, running
a red light and being stuck for no reason (i.e. not behind
an obstacle nor stopped at a red traffic light). For all those
termination conditions, the agent receives a reward of -1.

With only the two previous reward components, we ob-
served the trained agents were not going straight as oscil-
lations near the center of lane were giving almost the same
amount of reward as going straight. That is why we added
our third reward component, desired rotation. This reward
is inversely proportional to the difference in angle between
the agent and the orientation of the nearest waypoint from
the optimal trajectory (see Figure 3 for details). Ablation
studies on the reward shaping can be found at section 6.3.

4.3. Network Architecture

Most of networks used in model-free RL with images
as input train a particularly small network [7, 12] compared
to networks used commonly in supervised learning [32, 11].
One of the larger networks used for model-free RL for Atari
is the large architecture from IMPALA [8] which consists
of 15 convolutional layers and 1.6 million parameter: as
comparison our architecture has 18 convolutional layers and
30M parameters. Moreover IMPALA used more than 1B
frames when we used only 20M. The most common archi-

tecture (e.g. [24, 6]) is the one introduced in the original
DQN paper [25], taking a 84×84 grayscale image as input.
Our first observation is that traffic light state (particularly
for US traffic lights which are farther) can not be seen on so
small images. Therefore a larger input size has been chosen
(around 40 times larger): 4×288×288×3 by concatenating
4 consecutive frames as a simple and standard [25, 7] way to
add some temporality in the input. We choose this size as it
was the smallest one we tested on which we still had a good
accuracy on traffic light detection (using a conventional su-
pervised training). We choose to use Resnet-18 [11] as a
relatively small network (compared to the one used in super-
vised training) to ensure a small inference time. Indeed RL
needs a lot of data to converge so each step must be as fast as
possible to reduce the overall training time. However, even
if Resnet-18 is among the smallest networks used for super-
vised learning, it contains around 140 times more weights in
its convolutional layers than DQN [25]. Moreover Resnet-
18 incorporates most of state-of-the art advances in super-
vised learning such as residual connections and batchnorm
[14]. Finally, we use a conditional network as in Codev-
illa et al. [4] to handle 6 different maneuvers: follow lane,
left/right/straight, change lane left/right. The full network
architecture is described in Figure 4.

5. Challenges and Solutions to apply RL to
Complex Autonomous Driving Tasks

In this section, we present our suggestions to solve the
issues arising when using a large network with RL and how
to handle discrete actions.

5.1. Training RL with high complexity input size:
Implicit Affordances

How to train a larger network with larger images for
RL? Using a larger network and input size raises two ma-
jor issues. The first one is that such a network is much
longer and harder to train. Indeed it is well known that
training a DRL agent is data consuming even with tiny net-
works. The second issue is the replay memory. One of the
major advantages of value-based RL [25, 12] over policy-
based methods is to be off-policy, meaning the data used
for learning can come from another policy. However stor-
ing image 35 times bigger raises issues for storing as many
transitions (usually 1M transitions are stored which corre-
spond to 6GB for 84×84 images and thus would be 210GB
for 288× 288× 3 images which is unpractical).

Our main idea is to pre-train the convolutional encoder
part of the network to predict some high-level information
and then freeze it while training the RL. The intuition is that
the RL signal is too weak to train the whole network but can
be used to train only the fully connected part. Moreover this
solves the replay memory issue as we can now store fea-
tures directly in the replay memory and not the raw images.



Figure 4. Network architecture. A Resnet-18 [11] encoder is used in a conditional network [4] with a Rainbow-IQN [33] RL training
(hence the IQN network [6] and noisy fully connected layers [9])

We coin this scheme as implicit affordances because the RL
agent does not use the explicit predictions but has only ac-
cess to the implicit features (i.e the features from which our
initial supervised network predicts the explicit affordances).

Which high level semantic information/affordances to
predict? The most simple idea to pre-train our encoder
would be to use an auto-encoder [19], i.e. trying to com-
press the images by trying to predict back the full image
from a smaller feature space. This was used in the work
Learning to Drive in a Day [18] and allowed for faster train-
ing on their real car. We argue this would not work for our
harder use-case particularly regarding the traffic light detec-
tion. Indeed, traffic light states represent only a few pixels
in the image (red or green) but those pixels are the most
relevant for the driving behavior.

To ensure that there is relevant signal in the features used
as RL state, we choose to rely on high level semantic infor-
mation available in CARLA. We use 2 main losses for our
supervised phase: traffic light state (binary classification)
and semantic segmentation. Indeed all relevant information
but traffic light state is contained in our semantic segmen-
tation. We use 6 classes for the semantic mask: moving
obstacles, traffic lights, road markers, road, sidewalk and
background. We also predict some other affordances to help
the supervised training such as the distance to the incoming
traffic light, if we are in an intersection or not, the distance
from the middle of the lane and the relative rotation to the
road. The two last estimations are coming from our view-
point augmentation (without it the autopilot is always per-
fectly in the middle of the lane with no rotation). Our super-
vised training with all our losses is represented in Figure 5.
Ablation studies to estimate the impact of these affordance
estimations are presented on section 6.2.

Viewpoints Augmentation The data for the supervised
phase is collected while driving with an existing autopilot in
the CARLA simulator. However this autopilot always stays
in the middle of the lane, so the pre-trained encoder which
is frozen does not generalize well during the RL training,

Figure 5. Decoder and losses used to train the encoder: semantic
segmentation, traffic light (presence, state, distance), intersection
presence, lane position (distance and rotation)

particularly when the agent starts to deviate from the mid-
dle of the lane: with an encoder trained on data collected
only from autopilot driving, an RL agent performance is
poor. This is the exact same idea as for IL with the distri-
bution mismatch and the intuition behind it is explained on
Figure 6. To solve this, we suggest to add viewpoints aug-
mentation by moving the camera around the autopilot. With
this augmentation the encoder performance is much better
while the RL agent drives and explores and we found this
was mandatory to obtain good performance during the RL
training phase.

In summary, training a large encoder with well selected
supervised tasks and using the resulting feature maps, the
implicit affordances, as an input state for RL training, ad-
dresses the problem of input, network and replay memory
size. One should take care to properly augment the data dur-
ing the supervised training phase, to make sure the encoding
is adapted during the exploration of the RL training.

5.2. Handling Discrete Actions

As aforementioned, standard value-based RL algorithms
such as DQN [25], Rainbow [12] and Rainbow-IQN [33]
imply to use discrete actions. Preliminary experiment with



Figure 6. Why data augmentation is needed for training the en-
coder: RL agents trajectories (right) might deviate from the lane
center, which leads to semantic segmentation with much more var-
ied lane marking positions than what can be encountered if training
only from autopilot data (left).

few discrete actions (only 5 for steering) resulted in agents
oscillating and failing to stay in lane. Better results can be
obtained by using more steering actions such as 9 or 27 dif-
ferent steering values. Throttle is less of an issue: 3 dif-
ferent values for throttle are used, plus one for brake. This
leads to a total of 36 (9× 4) or 108 (27× 4) actions for our
experiments. We also try to predict the derivative of steer-
ing angle: the prediction of network is used to update the
previous steering (which is given as input) instead of using
directly the prediction as current steering. The impact of
these choices is studied in section 6.3.

To reach more fine-grained discrete actions, we strongly
suggest to use a bagging of multiple predictions and average
them. To do so, we can simply use consecutive snapshots of
the same training, which avoids having to train again and is
free to have. This trick is consistently improving behavior,
reducing oscillations by a large margin and obtaining better
final performance. Furthermore, as the encoder is frozen, it
can be shared, so the computational overhead of averaging
multiple snapshots of the same training is almost negligible
(less than 10% of the total forward time for averaging 3
predictions). Therefore, all our reported results are obtained
by averaging 3 consecutive snapshots of the same training
together (for example, results at 10M steps is the bagging
of snapshots at 8M, 9M and 10M).

In summary, discrete actions can be compensated by in-
creasing the number of actions, and averaging several dis-
crete predictions.

6. Experiments and Ablation Studies
6.1. Defining a Common Test Situation and a Metric

for Comparison

We first define a common set of scenarios and a metric to
make fair comparison. Indeed the CARLA challenge maps
are not publicly available and the old CARLA benchmark is
only available on a deprecated version of CARLA (0.8.X)
on which rendering and physics differs from the version of
CARLA used in the CARLA challenge (0.9.X). Moreover
as aforementioned, this CARLA benchmark is a much sim-
pler task than the CARLA challenge.

Defining test scenarios We choose the hardest environ-
ment in the available maps of CARLA. Town05 includes
the biggest urban district, is mainly multi-lane and US style:
the traffic lights are on the opposite side of the road and
much harder to detect. We also randomly spawn pedestri-
ans crossing the road ahead of our agent to verify our mod-
els brake on this situations. We additionally set changing
weather to make the task as hard as possible. This way,
even with a single town training, we have a challenging
setup. The single town training is necessary to make all
our experiments and ablations studies in a reasonable time.
All those experiments were made with 20M iterations on
CARLA, with 3 actors (so 6.6M steps for each actor) and
with a framerate of 10 FPS. Thus 20M steps is equivalent
to around 20 days of simulated driving (as a comparison the
most standard time [25, 6] used to train RL for Atari games
is 200M frames corresponding to around 40 days and can
go to more than 5 years of gametime [17, 13]). We define
10 scenarios of urban situations each one consisting in 10
consecutive intersections over the whole Town05 environ-
ment. We also define some scenarios on highway but those
cases are much easier and thus less discriminative: for ex-
ample our best model goes off-road less than one time every
100km on highway situation. Highway scenarios are mostly
used for evaluating the oscillations of our different agents.

Defining a metric to compare different model and abla-
tion studies We test our models 10 times on each scenario
varying the weather condition and resetting the position of
all other agents. Contrary to the training phase, we only
terminate episode when the agent goes off-road as this al-
lows to keep track of the number of infractions encountered.
Our main metric is the average percentage of intersections
successfully crossed (Inters., higher is better), for example
50% completion corresponds to a mean of 5 intersections
crossed in each scenario. We also keep track of the percent-
age of traffic lights passed without infraction (TL, higher
is better) and the percentage of pedestrians passed without
collision (Ped., higher is better). Note that the last two are
slightly less relevant, as a non-moving car will never run



Encoder used Inters. TL Ped.

Random 0% NA NA
No TL state 33.4% 80% 82%
No segmentation 41.6% 96.5% 63%
All affordances 61.9% 97.6% 76%

Table 1. Comparison of agent performance with regards to encoder
training loss (random weights, trained without traffic light loss,
without semantic segmentation loss, or with all affordance losses)

a red traffic light nor crash a pedestrian. That is why In-
ters. is our main metric for comparison: TL and Ped. are
used for more fine-grained comparison. We also introduce
a measure for oscillations: the mean absolute rotation be-
tween the agent and the road along the episode (Osc., lower
is better).

6.2. Ablations Studies on the Supervised Phase

In this section, we will detail our ablation studies con-
cerning the supervised learning phase of affordances. The
RL setup is exactly the same to ensure fair comparison.

First, some experiments are conducted without any su-
pervised phase, i.e. training the whole network from scratch
in the RL phase. Three different architectures are com-
pared: the initial network from DQN with 84 × 84 im-
ages, a simple upgrade of the DQN network which takes
288 × 288 × 3 images as input and finally our model with
the Resnet-18 encoder.

Figure 7 shows that without affordances learning, agents
fail to learn and do not even succeed to pass one intersec-
tion in average (less than 10% intersections crossed). More-
over it is important to note that training the bigger image
encoder (respectively the full resnet-18) took 50% (resp.
200%) more time than training with our implicit affor-
dances scheme even considering the time used for the super-
vised phase. Consequently these experiments are stopped
after 10M steps. These networks also require much more
memory, because full images are stored in the replay mem-
ory. As expected, these experiments prove that training a
large network using only RL signal is hard.

The second stage of experiments concerned the Resnet-
18 encoder training. First, as a sanity check, the encoder
is frozen to random features. Then, either the traffic light
state or the segmentation is removed from the loss in the
supervised phase. These experiments show the interest of
predicting the traffic light state and the semantic segmen-
tation in our supervised training. The performance of the
corresponding agents is illustrated in Figure 7.

Table 1 shows that removing the traffic light state has a
huge impact on the final performance. As expected the RL
agent using an encoder trained without the traffic light loss
is running more red traffic lights. It is interesting to note that
this ratio is much better than a random choice (which would
be 25% of success for traffic light because traffic lights are
green only 25% of the time). This means that the agent still

Input/output Inters. TL Ped. Osc.

Constant desired speed 50.3% 31% 42% 1.51◦

No angle reward 64.7% 99% 77.7% 1.39◦

27 steering values (derivative) 64.5% 98.7% 85.1% 1.64◦

9 steering values (absolute) 74.4% 98.5% 84.6% 0.88◦

27 steering values (absolute) 75.8% 98.3% 81.6% 0.84◦

Table 2. Performance comparison according to the steering angle
discretization used and reward shaping

succeeds to detect some traffic light state signal in the fea-
tures. We guess that as the semantic segmentation includes
a traffic light class (but not the actual state of it) the features
contain some information about traffic light state. Remov-
ing the semantic segmentation loss from the encoder train-
ing also has an impact on final performance. As expected,
performance on pedestrian collision is worse than any other
training meaning the network has trouble to detect pedestri-
ans and vehicles (this information is only contained in the
semantic map).

6.3. Ablations Studies on the RL Setup

For fair comparison, the same pre-trained encoder is
used for all experiments, trained with all affordances men-
tioned in Section 5.1. The encoder used here is the same one
as the CARLA challenge, and has been trained on slightly
more data and for more epochs than the encoders used for
the previous ablation study.

Two experiments are conducted with different rewards to
measure the impact of the reward shaping. In the first one
(constant desired speed), the desired speed is not adapted
to the situation: the agent needs to understand only from
termination signal to brake on red traffic lights and to avoid
collisions. In the second experiment, the angle reward com-
ponent is removed to see the impact of this reward on oscil-
lations. Two different settings for actions are also evaluated.
First, the derivative of the steering angle is predicted instead
of the current steering. Finally the steering angle discretiza-
tion is studied, decreasing from 27 to 9 steering absolute
values. Results are summarized in Table 2.

The most interesting result of these experiments is the
one from Constant desired speed. Indeed, the agent fails
totally at braking for both cases of red traffic light or pedes-
trian crossing: its performance is much worse than any
other agent. The agent trained with desired speed set to con-
stant runs 70% of traffic lights which is very close to a ran-
dom choice. It also collides with 60% of pedestrians. This
experiment shows how important the speed reward compo-
nent is to learn a braking behaviour.

Surprisingly, we find that predicting derivative of steer-
ing results in more oscillations, even more than when re-
moving the desired rotation reward component. Finally,
taking 9 or 27 different steering values does not have any
significant impact and both of these agents reach the best
performance with low oscillation.



Figure 7. Evolution of agent performance with training steps and choice of the encoder behavior. The first group of encoders (solid lines)
have frozen weights, the second group (dashed) are trained only by the RL signal (stopped earlier because the performance is clearly
lower). Some experiments are averaged over multiple seeds (see Supplementary Materials for details on stability).

Training Unseen EU Town Unseen US Town
Only Town05 2.4% 42.6%
Multi town 58.4% 36.2%

Table 3. Generalization performance (Inters. metric).

6.4. Generalization on Unseen Towns

Finally, we conduct experiments on generalization, fol-
lowing the actual setting of the CARLA challenge. For this
purpose, we train on 3 different towns at the same time (one
with EU traffic light and the 2 others with US) and test on
2 unseen town (one EU and one US). We also test our best
single town agent as a generalization baseline.

Results are presented in Table 3. We can see that perfor-
mance on the unseen EU town is really poor for the agent
trained only on a single US town, confirming the interest
of training on both EU and US town at the same time. On
the unseen US town, the performance is roughly similar for
both trainings. These experiments show that our method
generalizes to unseen environments.

6.5. Comparison on CARLA Benchmark

Very recently, Learning by Cheating (LBC) [3] re-
implemented on open-source the CARLA benchmark on
the newest version of CARLA (0.9.6). With such limited
time, we did not have time to change our training setup at
time of submission regarding the weather condition, so only
training weather results are reported in Table 4 (test weather
results can be found in the Supplementary).

LBC [3] which uses IL, is the only one outperforming
our RL agent on the hardest task of CoRL2017 benchmark
(ie. Nav. dynamic). We also have similar results to the LBC
baseline on the much harder NoCrash benchmark. Note that

CoRL2017 (train town) NoCrash (train town)
Task RL CAL CILRS LBC Ours Task LBC Ours

Straight 89 100 96 100 100 Empty 97 100
One turn 34 97 92 100 100 Regular 93 96
Navigation 14 92 95 100 100 Dense 71 70
Nav. dynamic 7 83 92 100 100

CoRL2017 (test town) NoCrash (test town)
Task RL CAL CILRS LBC Ours Task LBC Ours

Straight 74 93 96 100 100 Empty 100 99
One turn 12 82 84 100 100 Regular 94 87
Navigation 3 70 69 98 100 Dense 51 42
Nav. dynamic 2 64 66 99 98

Table 4. Success rate comparison (in % for each task and scenario,
more is better) with baselines [7, 31, 5, 3] on train weathers.

we can only compare to LBC because other works have not
been tested yet on the NoCrash benchmark with pedestrians
(only available in the open-source implementation of LBC
[3]). Finally, our work is outperforming the only other RL
baseline [7] by a huge margin. This is also the first time a
RL approach matches and even outperforms IL approaches
on the CARLA benchmark. The inference code and the
weights of our model can be found on open-source2.

7. Conclusion
In this work, we present the first successful RL agent at

end-to-end urban driving from vision including traffic light
detection, using a value-based Rainbow-IQN-Apex training
with an adapted reward and a large conditional network ar-
chitecture. To solve this in a challenging autonomous driv-
ing context, we introduce implicit affordances, which use a
large encoder trained for tasks relevant to autonomous driv-

2https://github.com/valeoai/LearningByCheating



ing in a supervised setting. We validate our design choices
with ablation studies, and showcased our performance by
winning the track “Camera Only” in the CARLA challenge.

In future work, it could be interesting to apply our im-
plicit affordances scheme for policy-based or actor-critic
and to train our affordance encoder on real images in order
to apply this method on a real car.
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A. Supplementary materials: Implementation
details

In this section, we will detail the hyper-parameters and
the architecture of both the Supervised and the Reinforce-
ment Learning training.

A.1. Supervised phase of affordances training: ar-
chitecture and hyper-parameters

Our encoder architecture is mainly based on Resnet-18
[11] with two main differences. First, we changed the first
convolutional layer to take 12 channels as input (we stack
4 RGB frames). Secondly, we changed the kernel size of
downsample convolutional layers from 1x1 to 2x2. Indeed
as mentionned in the paper Enet [27], When downsampling,
the first 1x1 projection of the convolutional branch is per-
formed with a stride of 2 in both dimensions, which effec-
tively discards 75% of the input. Increasing the filter size to
2x2 allows to take the full input into consideration, and thus
improves the information flow and accuracy.. We also re-
moved the two last layers: the average pooling layer and the
last fully connected. Finally, we added a last downsample
layer taking 512x7x7 feature maps as input and outputting
our RL state of size 512x4x4.

For the loss computation, we add a weight of 10 for the
part of the loss around traffic light state detection, and 1 for
all other losses.

Table 5. Supervised training hyperparameters
Parameter Value

Learning rate 5.10−5, eps 3.10−4 (Adam)
Batchsize 32
Epochs 20

For the semantic decoder, each layer consists of an up-
sample layer with a nearest neighbor interpolation, then 2
convolutional layers with batchnorm. All the other losses
are build with fully connected layers with one hidden layer
of size 1024. See Table 5 for more details on other hyper-
parameters used in the supervised phase.

To train our encoder, we used a dataset of around 1M
frames with associated ground-truth label (e.g. semantic
segmentation, traffic light state and distance). This dataset
was collected mainly in 2 cities of the CARLA [7] simula-
tor: Town05 (US) and Town02 (EU).

A.2. Reinforcement Learning phase: architecture
and hyper-parameters

In all our RL trainings, we used our encoder trained on
affordances learning as a frozen image encoder: the actual
RL state is the 8162 features coming from this frozen en-
coder. We then give this state to one fully connected layer

of size 8162x1024. Then from these 1024 features concate-
nated with the 4 previous speed and steering angle values,
we use a gated network to handle different orders as pre-
sented in CIL [4]. All the 6 heads have the same architec-
ture but different weights, they are all made with 2 fully
connected layers with one hidden layer of size 512.

Table 6. RL training hyperparameters for our Single Town and
Multi-Town experiments: all parameters not mentioned come from
the open-source implementation of Rainbow-IQN [33].

Parameter Single Town / Multi-Town
Learning rate 5.10−5, eps 3.10−4 (Radam)

Batchsize 32
Memory capacity 90 000 / 450 000

Number actors 3 / 9
Number steps 20M (23 days) / 50M (57 days)

Synchro. actors/learner Yes / No

All hyperparameters used in our Rainbow-IQN training
are the same as the one used in the open-source implemen-
tation [33] but for the replay memory size and for the op-
timiser. We use the really recent Radam [22] optimiser as
it is giving consistent improvement on standard supervised
training. Some comparisons were made with the Adam op-
timiser but did not show any significant difference. For all
our Single Town experiments, we used Town05 (US) as en-
vironment. For our Multi-Town training, we used Town02
(EU), Town04 (US) and Town05 (US). Table 6 details the
hyper-parameters used in our RL training.

B. Experiments
B.1. Stability study

One RL training of 20M steps was taking more than one
week on a Nvidia 1080 Ti. That is why we did not have
time nor computational resources to run an extensive study
on the stability for all our experiments. Moreover evaluat-
ing our saved snapshot was also taking time, around 2 days
to evaluate performance each million of steps as in Figure 7
of the main paper. Still, we performed multiple runs for
3 experiments presented in Table 1: No TL state, No seg-
mentation and All Affordances. We evaluated those seeds at
10M and at 20M steps and the results (mean and standard
deviation) can be found in the following Table 7.

10M steps 20M steps
Encoder used Inters. Nb seeds Inters. Nb seeds

No TL state 17.9% ± 7.3 6 27% ± 5.7 5
No segmentation 27.7% ± 9.3 5 41.7% ± 0.1 2
All affordances 24.9% ± 8.2 6 64.4% ± 2.5 2

Table 7. Mean and standard deviation of agents performance with
regards to encoder training loss (trained without traffic light loss,
without semantic segmentation loss, or with all affordance losses)



Even if we just have few different runs, those exper-
iments on stability support the fact that our training are
roughly stable and our results are significant. At 20M steps
the ”best” seed of No TL state perform worse than both
seeds of No segmentation. More importantly, both seeds
of No segmentation perform way worse than both seeds of
All affordances.

B.2. Additional experiments

We made one experiment, 4 input one output, to know
the impact of predicting only one semantic segmentation
instead of predicting 4 at the same time. Indeed, we stack
4 frames as our input and we thought it would give more
information to learn from, if we train using all 4 semantic
segmentations. We also tried to remove temporality in the
input: taking only one frame as input and thus predicting
only one semantic segmentation, One input one output. Fi-
nally, we made an experiment, U-net Skip connection, on
which we used a standard U-net like architecture [29] for
the semantic prediction. Indeed we did not use skip con-
nections in all our experiments to prevent the semantic in-
formation to flow in this skip connections. Our intuition
was that the semantic information could not be present in
our final RL state (the last features maps of 4x4) if using
skip connections.

The results of this 3 experiments are described in Table 8.

Encoder used Inters. TL Ped.

One input one output 29.6% 95% 85%
4 input one output 64.3% 93.8% 70.7%
U-net Skip connection 58.6% 95% 69.8%
All affordances 64.4% 98.1% 76.2%

Table 8. Additional experiments to study impact of temporality
both as input and as output of our Supervised phase. Also experi-
ments with skip connection for the semantic prediction (U-net like
skip connection [29]).

We can see from this results that using only one frame
as input has a large impact on the final performance (going
from 64% intersections crossed with our standard scheme
All Affordances to 29% when using only one image as in-
put). The impact of predicting only one semantic segmenta-
tion instead of 4 is marginal on our main metric (Inters.) but
we can see that the performance on traffic lights (TL) and
on pedestrians (Ped.) are slightly lower. Finally, the impact
of using U-net like skip connections seems to be relatively
small on the number of intersection crossed. However, there
is still a difference with our normal system particularly on
the pedestrians metric.

As a conclusion, those additional experiments confirmed
our intuitions first about adding temporality both as input
and output of our encoder and secondly to not use standard
U-net skip connection is our semantic segmentation decoder
to prevent semantic information to flow away from our final

RL state. However, the impact of those intuitions are rela-
tively small and we conducted only one seed which could
not be representative enough.

B.3. Description of our test scenario

Each of our scenario is defined by a starting waypoint
and 10 orders one for each intersection to cross. An exam-
ple of one of our 10 scenario can be found on Figure 8. We
also spawn 50 vehicles in the whole Town05 while testing.
Finally, we spawn randomly pedestrian ahead of the agent
every 20/30 seconds.

Figure 8. Sample of one of our scenario in Town05. The blue point
is the starting point, the red is the destination.

B.4. Comparison on CARLA Benchmark: Imple-
mentation Details and Test Weathers Results

B.4.1 Test weathers results (train and test town)

As mentioned in the main paper, we did not have time to
re-implement our training setup for the really recently re-
leased [3] implementation of the CARLA benchmark on
the newer version of CARLA (0.9.6), particularly regarding
the weather condition. At submission time, all our train-
ing were done under all possible weather conditions. That’s
why we reported our results only for training weathers in the
main paper. We only had time to train our whole pipeline
in the exact condition of the CARLA benchmark (i.e. only
Town01 and train weathers for training and Town02 and test
weathers for test) after acceptance. That’s why we give our
results for test weather only in the Supplementary Materi-
als.

We can see from Table 9 that we are the only approach
reaching a perfect score on all the tasks under test weathers.
However, we can see that our results on the NoCrash bench-
mark fall far behind LBC [3] baseline under test weathers
(even if our results were similar under train weathers). We
found that the test weathers on the NoCrash benchmark are
actually really different from the train weathers, particu-
larly regarding sun reflection on the ground. We discov-
ered that our frozen encoder trained only on Town01/train
weathers was predicting sun reflection as ”moving obsta-
cles” and thus in this situation the RL agent is just braking
for ever, acting like if a car was ahead. Most of our failure



CoRL2017 (train town) NoCrash (train town)
Task RL CAL CILRS LBC Ours Task LBC Ours

Straight 86 100 96 100 100 Empty 87 36
One turn 16 96 96 96 100 Regular 87 34
Navigation 2 90 96 100 100 Dense 63 26
Nav. dynamic 2 82 96 96 100

CoRL2017 (test town) NoCrash (test town)
Task RL CAL CILRS LBC Ours Task LBC Ours

Straight 68 94 96 100 100 Empty 70 24
One turn 20 72 92 100 100 Regular 62 34
Navigation 6 88 92 100 100 Dense 39 18
Nav. dynamic 4 64 90 100 100

Table 9. Success rate comparison (in % for each task and scenario,
more is better) with baselines [7, 31, 5, 3] on test weathers.

under test weathers on NoCrash benchmark are in fact time-
out because our agent is not moving anymore when he faces
sun reflection on the ground. Handling diverse weather con-
ditions is a known issue for perception algorithms and we
think that improving our supervised performance (particu-
larly the semantic segmentation) would probably manage
this issue but this is left as future work.

B.4.2 Implementation Details for the CARLA bench-
mark

To train our new encoder in the exact condition of the
CARLA benchmark, we used a new dataset of around 500K
frames with associated ground-truth label (e.g. semantic
segmentation, traffic light state and distance). This dataset
was collected only in Town01 and under training weathers.
Then we trained our RL agent with the implicit affordances
coming from this new encoder for around 40M steps using
9 actors with all actors on Town01 under training weath-
ers. We used a slightly bigger field of view (from 90◦ to
100◦) and we cropped the sky (from 288x288x3 images
to 288x168x3) as the EU traffic lights are less high than
the US traffic lights (the CARLA benchmark contains only
EU traffic lights). Finally, we removed all the change lane
orders because all towns in CARLA benchmark are single
lane (the CARLA benchmark setup is actually simpler than
the CARLA challenge for which this paper has been ini-
tially done).

B.5. Training infrastructure

The training of the agents was split over several comput-
ers and GPUs, containing in total:

• 3 Nvidia Titan X and 1 Nvidia Titan V (training com-
puter)

• 1 Nvidia 1080 Ti (local workstation)

• 2 Nvidia 1080 (local workstations)

• 3 Nvidia 2080 (training computer)


