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Abstract— This paper presents an end-to-end real-time
monocular absolute localization approach that uses Google
Street View panoramas as a prior source of information to
train a Convolutional Neural Network (CNN). We propose
an adaptation of the PoseNet architecture [8] to a sparse
database of panoramas. We show that we can expand the
latter by synthesizing new images and consequently improve
the accuracy of the pose regressor. The main advantage of our
method is that it does not require a first passage of an equipped
vehicle to build a map. Moreover, the offline data generation
and CNN training are automatic and does not require the input
of an operator. In the online phase, the approach only uses one
camera for localization and regresses poses in a global frame.
The conducted experiments show that augmenting the training
set as presented in this paper drastically improves the accuracy
of the CNN. The results, when compared to a handcrafted-
feature-based approach, are less accurate (around 7.5 to 8 m
against 2.5 to 3 m) but also less dependent on the position of
the camera inside the vehicle. Furthermore, our CNN-based
method computes the pose approximately 40 times faster (75
ms per image instead of 3 s) than the handcrafted approach.

I. INTRODUCTION

The localization of a vehicle is a task that has raised
a lot of attention lately, especially in urban environments.
For autonomous driving or simply navigation, positioning a
vehicle in cities has proved to be a challenging task due to
urban canyons and non-line-of-sight propagation of GNSS
signals. As such, many methods rely on the detection of
distinctive environment features to localize a vehicle. Simul-
taneous Localization and Mapping (SLAM) is the privileged
method due to its ability to incrementally build a map of the
surroundings while localizing the vehicle inside it. However,
the application of such methods at a worldwide scale can be
problematic, as detailed below.

Vehicles are supposed to be able to be localized dur-
ing hundreds of kilometers of continuous driving. Visual-
based and LIDAR-based SLAM algorithms tend to drift
over time due to an accumulation of errors caused by the
integration of local measurements. Even the best approaches
[23] exhibit an average error above 0.5% of the length
of the trajectory, meaning that after 10 km, the position
given by a SLAM algorithm could be 50 meters away
from the real one. Countering the drift is still possible with
loop closure (recognizing a previously visited place) or by
integrating absolute information. The latter, under the form
of GNSS measurements, are most of the time insufficient in
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urban environments, even with differential corrections. Loop
closing, even if partially correcting the drift, does not ensure
that an estimation becomes drift-free [13]. It also means
that the followed trajectory should regularly loop, which is
rarely the case in a normal driving situation. The most viable
option thus becomes to build maps beforehand using SLAM
techniques, and then use the produced map as a constraint
for the localization algorithm [20][11].

The main issue thus becomes the fact that these maps
should be built at a worldwide scale, requiring vast fleets of
equipped vehicles to do so. Even if this effort has already
been initiated by mapping companies, it remains mainly
focused on highways and the acquired data are not freely
accessible. However, many information (especially images)
are available regarding cities and urban environments as a
whole. In this paper, we explore the use of Google Street
View panoramas, an immense collection of images at a nearly
worldwide scale, to automatically build prior environment
representations that can then be used in a localization algo-
rithm using a single camera. More specifically, we investigate
how such a data source an be used to train a Convolutional
Neural Network (CNN) to regress, in an end-to-end manner,
the position and orientation of a vehicle from an image. Our
contributions are the following:
• The adaptation and application of PoseNet [8] to a

sparse, worldwide database of panoramas.
• The validation of the approach with real data acquired

in urban environments.
• A comparison of the results with a previously developed

approach that uses handcrafted features [21].
The rest of this paper is divided as follows: Section

II exposes the related work regarding the use of existing
information sources for visual localization as well as end-
to-end pose regression with CNNs. Section III presents the
developed method and focuses on how to build a viable
training set out of Google Street View panoramas. Section
IV describes the conducted experiments and the obtained re-
sults in comparison to a handcrafted-feature-based approach.
Finally, Section V concludes and give some insights about
future works.

II. RELATED WORK

Localization is a topic that has received a lot of attention
from the scientific community. Interested readers can refer
to [5][4] for recent surveys. We will focus here on visual
localization systems that take advantage of an existing source
of information.

Visual map-aided localization systems are very few in the
literature and mainly use Google Street View panoramas due



to the presence of their accurate positioning and of a coarse
depth map (see Figure 1 for an example). The problem
is often addressed with a place recognition objective. In
[12], the authors present a ground-air place recognition
system that matches aerial images with Street Views and 3D
cadastral building models. Street Views are converted into
a feature-based representation using Affine Scale-Invariant
Feature Transform (ASIFT). A similar matching method is
exploited in [19] but noisy results are removed from the
trajectory with Minimum Spanning Trees (MSTs). In [22],
the authors build an indexed tree based on SIFT descriptors
extracted from 100,000 Street Views. A voting scheme is
then used to choose the closest panorama to the query image.
From a place recognition point of view, the main challenge
remains to find informative enough descriptors at a city scale
[3][17][18].

Regarding metric visual localization, we can cite the
work of Zhang et al. [24] in which the position of the
camera is estimated by triangulation between several geo-
referenced Street Views. In [1], localization is performed
with a two-stage approach. In the first phase, the 3D positions
of tracked features in monocular sequences are estimated.
Then, these estimated points are associated with Street
Views in order to compute a relative transformation. Results
are not directly metrically evaluated with Street Views but
with recreated panoramas. Outside of Street Views, other
approaches involving existing data can be found such as the
use of aerial images [10] or the integration of geo-referenced
objects (traffic lights and signs, for instance) to constrain the
localization [16].

The rise of deep learning in perception has led to specific
approaches regarding localization. For instance, the authors
of [15] leverage Street View information and show that,
using deep reinforcement learning, it is possible to learn how
to navigate in multiple cities. The interest is not towards
the accurate localization of a vehicle using Street Views
but how it is possible to learn how to navigate in cities
using only Steet View information. Centered on metric
localization, but without using Steet Views, PoseNet [8]
is an approach that uses a CNN to directly regress from
a query image the corresponding 6 DoF pose. The CNN
is trained from image datasets and poses generated with
Structure from Motion (SfM). The results show an accuracy
of a few meters (between 1.5 to 3.7 m depending on the
validation test) but the convnet exhibits good robustness to
changes (both illumination, weather, and presence/absence
of non-static objects) and requires less computational time
that a standard SfM approach. VidLoc [6] follows the same
principle as PoseNet but takes into account the temporal link
between images using LSTM (Long Short-Term Memory)
and improves the results of PoseNet.

In this paper, we are interested in seeing how these
convnets could be applied to already available data such
as Street Views and thus remove the requirement of a first
passage to build a database. The main drawbacks are that
panoramas are far from each other (separated by 6 to 16
m) and have approximate and incomplete depth maps and

that some static elements of the scene that are needed for
localization can be masked, blurred or even not up-to-date
(taken in different seasons, time of day, traffic conditions,
etc.).

III. DEVELOPED METHOD

As previously mentioned, we want to see how CNNs could
be applied to regress a pose from an image when trained
with Street View imagery. Our proposed method works in
two phases. The whole pipeline is illustrated in Figure 2.

The first phase is an offline step in which Street View
panoramas, along with their depth maps and absolute posi-
tions, located in the test area are extracted. Panoramas are
transformed into a set of rectilinear images similar in consti-
tution to the images that will then be acquired in the online
step (green boxes). From this initial dataset, we generate
new images following the topology of the road network in
order to densify the training set (gray boxes). To do so, we
exploit the depth map associated to each panorama. From
there, and using an adapted PoseNet architecture [8] suited
to our problem, we train the convnet to regress a 2D position
and orientation using the whole set of images (synthesized
and real ones) and the absolute position furnished by Street
View (blue box). It is worth noting that the absolute position
of a Street View can be considered as accurate as it mixes
several sources (SfM, GPS, odometry, IMU) in an offline
manner [2].

In the online phase, the vehicle is driving inside the test
area. Using only a camera, the aim is to localization the
vehicle in an absolute manner. To do so, acquired images
are given to the previously trained convnet which returns,
as an output, the corresponding absolute 2D position and
orientation of the camera.

The central aspect of this pipeline is how can sparse
Street View images be used by a convnet in order to regress
a proper pose. We will focus on this aspect by exposing
how we augmented the original sparse Street View database
with synthesized images so as to densify the training set
(Subsection III-A) and how PoseNet has been adapted to fit
our constraints (Subsection III-B).

A. Street View augmentation

Street View panoramas are distributed along the road
network with an average distance of 6 to 16 meters in
the area used in the experiments. The distance varies a lot
depending on the type of environment and on the presence
of intersections. In order to properly train a CNN to regress
a pose from various locations, it is necessary to augment the
quantity of data and their distribution along the road network
where the vehicle will certainly be driving.

First, we need to be able to transform a panorama into
a set of rectilinear images. To do so, we built a back
projection model using ray tracing and bilinear interpolation
as proposed in [14]. We create n virtual pinhole cameras,
with an intrinsic calibration matrix K, located at the center
O of a unit sphere S. The orientation of these virtual cameras
(defined by roll (ψ), pitch (φ) and yaw (θ) angles) can be



(a) Panorama (b) Depth map (c) Depth planes in colormap

Fig. 1: Example of Street View extraction at location [48.801516, 2.131556] in Versailles, France. The depth map is computed from the given planes.

(a) Offline convnet training

(b) Online exploitation

Fig. 2: Pipeline of our approach for both automatic offline training and
online exploitation. Gray boxes correspond to the Street View augmentation.

freely selected depending on the most relevant part of the
panorama. A good practice is to fix ψ and φ close to the
onboard camera so as to generate images with the same
viewing angle and so ease the localization. We use n different
θ values to generate the required amount of images in the
panorama. From a 3D point P, expressed in the coordinates
of the sphere S, we can compute its perspective projection
p.

p = K
R(ψ, φ, θ)P

d(R(ψ, φ, θ)P)
=

fx 0 u0
0 fy v0
0 0 1

 R(ψ, φ, θ)P

d(R(ψ, φ, θ)P)

(1)
f is the focal length and (u0, v0) the principal point.

Again, these parameters are fixed according to our onboard
camera. d is a function that selects the depth information

to normalize the points to a unit plan of depth equal to 1.
R is the 3D rotation resulting from ψ, φ and θ. The pixel
intensity is computed with bilinear interpolation.

Following this back-projection model, we are able to
render images at the position where the panorama was
taken. In order to distribute information along the potential
trajectory of the vehicle, we need to translate the panorama
(and so the sphere S) following the road network. To do
so, we use the global yaw θg given in the meta-data of any
Street View and which indicates the global orientation of the
vehicle when taking the panorama. We can thus compute a
translation t in ENU (East-North-Up) format:

t =

l sin(θg)l cos(θg)
1

 (2)

l is the Euclidian distance between the original panorama
and the virtual one, expressed in a translated sphere S′. This
distance can be set as needed. We can then compute the
coordinates of a point P in the new translated sphere S′.

PS′ = P+R(0, 0, θg)t (3)

We can then create rectilinear images using Equation (1).
Intensity values are interpolated from the original panorama
only for points whose depth is greater than 0 when expressed
in S′, otherwise we set the pixel intensity to 0. Conversely
to images created from the panorama location, many pixels
lack depth information when synthesized from a translated
sphere. Examples of 12 images synthesized from a panorama
translated 1 meter forward can be seen in Figure 3.

As can be easily spotted, some sky pixels have been
synthesized. This is due to approximations in the provided
depth map. The direct consequence is that it deteriorates the
quality of the synthesized images. Images are rendered in
grayscale to match the ones provided by the onboard camera
that was used in the experiments.

We generate images following the direction of the road
within a 4-meter range and with a 0.2-meter step, resulting
in 40 new locations from which to synthesize images for
one panorama. The 4-meter limit forward and backward
has been set to limit the number of dead pixels which
rises when synthesizing images far from the panorama. For
each of the 41 panoramas, we create a set of 60 virtual
cameras situated in the center of the sphere with θ distributed
between [0; 2π[ in order to have the maximum amount of



Fig. 3: Synthesized images from a panorama translated one meter forward. Images are generated using 12 different values of yaw angle θ.

details on the environment. For the images created from the
original panorama, we also generate 50 artificial brightness
changes by randomly varying the value channel of a small
amount (in HSV format) and 50 random shadows to simulate
different sunlight conditions. Based on the whole generation
scheme described here, we only keep synthesized images
with a majority of non-zero pixels, leading to an augmented
database that contains roughly 1500 times more images than
originally.

B. PoseNet adaptation

We worked on PoseNet’s architecture [8] instead of Vid-
Loc’s [6] due to the fact that our prior source of information
does not directly integrate a temporal continuity between
its panoramas. However, it could be worth investigating
as panoramas are dated and their relative proximity gives
information on the order in which they might be encountered
by a moving vehicle.

PoseNet is based on a slightly modified version of
GoogleNet where the softmax classifiers are replaced by
affine regressors. A Fully Connected (FC) layer is added
before the two regressors. The latter are responsible respec-
tively for regressing the 3D position of the camera (x) and
its orientation under the form of a quaternion (q). Stochastic
Gradient Descent is used to train the CNN with the following
loss function.

L = ‖x̂− x‖2 + β

∥∥∥∥q̂− q

‖q‖

∥∥∥∥2 (4)

Estimations are denoted as x̂ and q̂ and the ground truth
as x and q. The parameter β is used to adjust the relative
weight between position and orientation errors and can be
fine-tuned with grid search.

We adapted PosetNet to our problem in two ways. First,
we simplified the regressor outputs in order to provide only
a 2D position x2D and a global orientation θg . Positions are
projected from latitude and longitude to Universal Transverse

Mercator (UTM). We center them on the mean position of
the Street View panoramas of the test area to reduce the
magnitude of the values that are regressed by the CNN thus
leading to the loss function defined in Eq. (5).

L = ‖x̂2D − x2D‖2 + β
∥∥∥θ̂g − θg∥∥∥2 (5)

We also changed the CNN architecture from GoogleNet to
ResNet 50. The main reason for this change is that ResNet
is better at training without overfitting with a small training
dataset [7] which is our case. We modified the architecture
by replacing the final classifier with the pose regressor. We
also separate the regression of the 2D position and from the
orientation, similarly to what is done in PoseNet. We use
transfer learning to initialize the weights of convolutional
layers with values from the original ResNet trained for
classification on ImageNet.

IV. EXPERIMENTS AND RESULTS

The proposed method was evaluated using several acquisi-
tions made in the city of Versailles, France. The vehicle was
equipped with a camera and a Real Time Kinematic GNSS
fused with a high-end Inertial Measurement Unit used only
for ground truth purposes (accuracy of a few centimeters).
Two different camera settings were tested: a camera facing
forward, located inside the vehicle behind the windshield and
a camera facing sideway towards building fa̧cades (see Figure
4). The camera provides grayscale images (resolution of
640×480) at 20 Hz. Two examples of images taken from the
acquisitions are visible in Figure 5. It is important to note that
only images were used to evaluate the method and in a pure
end-to-end manner without any position tracking between
two consecutive images (each frame is treated independently
of the previous one).

Regarding the training phase, we used Keras and Ten-
sorFlow. Every image is resized to fit the CNN input to a
224 × 224 resolution. Training is conducted with gradient
descent using the Adam optimizer [9] with a learning rate of



Fig. 4: Position of the cameras in the vehicle used in the experiments.

Fig. 5: Images acquired from our vehicle in Versailles, France. Left: camera
facing forward. Right: camera looking sideway.

10−5 and a batch size of 80 samples during 500 epochs. We
compare the results obtained by our end-to-end pose regres-
sor with our previous approach based on handcrafted features
[21]. The latter uses a bag-of-words approach followed by a
feature matching between the current image and the closest
panoramas found. The resulting associations are then jointly
optimized using bundle adjustment.

First, we validate the benefits brought by both the aug-
mentation of the database and our adapted PoseNet archi-
tecture using one of the acquired sequences (Sequence 1 of
234 meters) where the camera is facing sideway. Results
are exposed in Table I. We can see that the augmented
database considerably reduces the error in position (9.86 m
against 48.13 m) but has no impact on orientation errors.
It is coherent with the fact that we augment the database
by creating translated panoramas. However, it also means
that augmenting the number of virtual cameras does not
help in estimating the orientation of the vehicle but only
for its position. The changes made in the architecture of
the CNN reduces again the errors regarding the position
of the vehicle (7.62 m against 9.86 m) but, similarly to
the augmented training set, has almost no effect on the
orientation estimation. The obtained positions are plotted in
Figure 6 along with the ground truth. We can observe that
the trajectory jumps a lot and seems affected by a lateral
offset. Jumps were expected as there is no integration of
the temporal continuity of the localization in the convnet to
smooth the trajectory. Regarding the lateral offset, it might
be caused by an imbalanced training set as parts of the streets
are more represented due the presence of depth information.
Even if synthesized images with a majority of zero pixels
are discarded, missing pixels could still have an impact on
how the CNN interprets query images at positions where the
training set was mainly constituted of images with a high
amount of missing pixels.

PoseNet [8] Ours

Street Views Augmented
Street Views

Augmented
Street Views

Training
error

Position (m) 8.54 0.73 0.08
Angular (◦) 1.28 1.28 0.94

Seq. 1
error

Position (m) 48.13 9.86 7.62
Angular (◦) 3.34 3.79 3.55

TABLE I: Results obtained by our method and PoseNet

Fig. 6: Trajectory obtained by our method (in blue) compared to the ground
truth (in red). Original panorama locations are indicated by red dots.

We evaluated our method over 5 trajectories, including
1 with the camera facing forward (and denoted Sequence
F) and compared it with our previously developed approach
based on handcrafted features [21]. The results are visible in
Table II. Fail indicates that the handcrafted approach could
not recognize the place due to many potential candidates
(environment not distinctive enough) or that the training of
the CNN was unable to properly converge (overfitting or
underfitting observed by a validation dataset excluded from
the training).

Seq. Number of Street Views Error Error of
(length) images (virtual) using [21] our approach

1 (234 m) 897 29 (1160) 2.85 m 7.62 m
2 (271 m) 898 29 (1160) 2.63 m 7.93 m
3 (222 m) 895 29 (1160) Fail Fail
4 (216 m) 901 34 (1360) 2.82 m 7.55 m
F (265 m) 554 29 (1160) Fail 7.87 m

TABLE II: Results obtained using the proposed method and an approach
based on handcrafted features [21]

Our handcrafted-feature-based approach outperforms, in
terms of accuracy, our adapted PoseNet. Errors range from
2.5 to 3 meters whereas the convnet regresses position within
an error of 7.5 to 8 meters. This is certainly caused by an
insufficient amount of information in the generated images
due to missing pixels. One solution to counter this could
be to synthesize images based on several panoramas or to
use Generative Adversarial Networks (GANs) to generate
missing information that are mainly common elements such



as sky or vegetation. Another prospect would be to first
segment the images and remove elements (put pixels to zero)
for which we do not have depth information. Of course, the
most obvious way to improve the performance would be to
have more complete and accurate depth maps.

We can note that both approaches fail to provide a proper
localization in Sequence 3. In both cases, we suspect that
it is caused by dense vegetation (trees, bushes, etc.) which
covers up most of the building fa̧cades where distinctive
information is usually found. Localization in Sequence F,
with the camera facing forward, was only possible with the
convnet approach and the reached accuracy is similar to other
sequences. Features were not distinctive enough to obtain a
localization with the handcrafted method. Sequences 1 and F
are taken in the same area thus illustrating that CNNs might
offer better robustness to the position and orientation of the
camera in the vehicle.

Finally, regarding computational time, with the appropriate
hardware, our CNN approach takes approximately 75 ms
per image whereas the approach in [21] takes 3 seconds on
average to compute a position. However, it is worth noting
that some parts of the processing could also be parallelized
to improve the overall computational time of this approach.

V. CONCLUSION

We have presented an end-to-end approach that regresses
the position and orientation of a vehicle based on a single im-
age. The main contribution of our method is that the training
is performed on Street View panoramas that can be extracted
and processed before using the vehicle and without requiring
a first passage to acquire data. We showed that it is possible
to expand this sparse database of panoramas by synthesizing
new images in order to help the CNN generalize the link
between images and poses. We compared the results obtained
by our approach in the city of Versailles, France with our
previously developed method based on handcrafted features
[21]. While still less accurate and globally insufficient for
autonomous driving, these first results are encouraging and
already roughly similar to that of a non-differential GPS, with
a negligible computation time (75 ms per image, instead of
3 s for the more precise handcrafted approach).

They could be further improved. Depth maps are very
coarse and do not cover all objects in the scene. It could be
interesting to synthesize new images using several panora-
mas. Another way to make up for missing information
would be to use GANs to generate the missing pixels in
the synthesized images. Adding a temporal link between
panoramas could also help to reduce the sudden jumps that
have been observed. One way to do that would be to use
Recurrent Neural Network and to synthesize images along
fake trajectories to simulate a coherent temporal continuity.
Finally, one obvious modification that would improve the
distinctiveness of the environment would be to use a color
camera instead of a grayscale one.
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