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This paper presents an efficient method for automatic training of performant visual
object detectors, and its successful application to training of a back-view car detec-
tor. Our method for training detectors is adaBoost applied to a very general family
of visual features (called “control-point” features), with a specific feature-selection
weak-learner: evo-HC, which is a hybrid of Hill-Climbing and evolutionary-search.
Very good results are obtained for the car-detection application: 95% positive car
detection rate with less than one false positive per image frame, computed on an
independant validation video. It is also shown that our original hybrid evo-HC
weak-learner allows to obtain detection performances that are unreachable in rea-
sonable training time with a crude random search. Finally our method seems to
be potentially efficient for training detectors of very different kinds of objects, as it
was already previously shown to provide state-of-art performance for pedestrian-
detection tasks.

1. Introduction

The seminal work of Viola and Jones [1] [2] introduced a new and powerful

framework for training of visual object detectors. It is based on the ada-

Boost algorithm, where each ”weak-classifier” assembled in the final strong

classifier uses a single and simple image feature. In most works inspired

by [1], these features are localized filters similar to Haar wavelet basis. At

each adaBoost step, one of them is selected whose weighted error on the
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training set is as low as possible.

Following this work, several authors tried different approaches for fur-

ther improvement of the algorithm, either for speeding up the training,

and/or improving the performance of the final detector. Two main direc-

tions have been explored: extending or changing completely the set of fea-

tures, and/or trying to replace the exhaustive search for feature selection by

a more efficient process. For instance, McCane and Novins [3] proposed an

alternative non-exhaustive search based on a simple “local search” heuris-

tic, and found that they could obtain nearly as good a classifier as in [2],

but with a much faster training. Bartlett et al. [4] also used some custom

heuristic based on initial random selection of a small subset (5%) of all

possible features, from which the best one is further refined by some kind

of local search (over a set of features obtained from the best initial one

by applying various shifting, scaling and reflecting operations). Treptow

and Zell [5] proposed to extend the features family proposed by Viola and

Jones to a more generalized set of similar features, and to use a specific

evolutionary search as “weak learner”. They found that adaBoost training

with their evolutionary search over their larger feature set produced better

detectors than exhaustive search applied to the initial limited feature set.

Simultaneously, we have proposed and tested in [6] and [7] a radically

different set of image features: the so-called “control-points” features (see

2.1), and designed a custom “evolutionary” weak-learner for selecting, at

each boosting step, an individual feature from the huge control-points fea-

ture space. In this paper, we detail our specific weak-learner heuristic, show

that it allows to reach detection performances unattainable by crude ran-

dom search, and present the very good results of our method on a different

application: car detection in images from on-vehicle camera (instead of face

or pedestrian detection).

2. Experiments

2.1. Image features

The very general family of features we use are called “control points” fea-

tures. This family was first designed and proposed by us in [6], where we

already described it. Therefore we hereafter only briefly recall what these

features are.

Each feature is defined by two sets of “control points”, {p1 . . . pi} and

{n1 . . . nj}, where i, j ≤ K (we use K = 6 as in [6]), all placed either

within the W × H detection window, or on a half-resolution or quarter
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Figure 1. Three examples of control point features: the left one is “full resolution”
with 2 ”positive” points and 3 ”negative” points located in the 36× 36 pixels detection
window; the middle one is ”half-resolution” with 3 positive and 2 negative points testing
the 18×18 pixels down-sampled detection window; the last one on the right is ”quarter-
resolution” with 5 positive and 2 negative points chosen in the 9× 9 pixels of the twice
down-sampled detection window. The upper row shows the control points by themselves,
and the lower row illustrates the application of the same 3 features to a given sub-window
extracted from one movie image.

resolution version of the same image. The feature examines the pixel values

in {p1 . . . pi} and {n1 . . . nj} in the relevant image (full, half or quarter

resolution), and answers ”yes” if and only if for every control-point p ∈

{p1 . . . pi} and every control point n ∈ {n1 . . . nj}, val(p) − val(n) > θ is

true, where θ is some feature-dependant minimal margin. Note that this last

condition is a generalization of the original control-points features defined

in [6] (where θ = 0). For the experiments presented here, the detection

window size W × H is 36× 36. We refer the reader to [6] for more details,

justification and advantages of this family of features.

2.2. Datasets

We used data recorded by ourselves with an on-vehicle 320x240 high-end

CCD color webcam (LogiTech QuickCam Pro 4000). The training and

validation sets were built partly manually (essentially for the positive ex-

amples), and partly using the ”active learning” approach, with the semi-

automated selective sampling implemented by the ”SEVILLE” software

(see [7] for more details). For creating the positive examples, the sub-

image was carefully positioned and sized in order to have the back of the

car centered, with margins of about 15% around it, as can be checked on

positive examples shown on top of figure 2.
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Figure 2. Some examples from our training set: various positive car examples on the
upper row, and several negative examples on the lower row (note that we define non-car
as non-”correctly centered rear of car”). Image examples are all square but of various
sizes; they are all warped before training to the same 36× 36 detection window, and its
2 sub-sampled versions.

Our final total dataset includes 3291 labeled square images of various

sizes, among which 1224 positive examples. This dataset was split in two:

2/3 of randomly chosen examples constituting the 2204 examples (including

791 positive) of our training set, the remaining 1/3 just being used as a

validation set to monitor for overtraining. For final testing, in order to

ensure an unbiased measure of accuracy, we used an independant recording

together with a manually built ”ground truth” information. The latter

specifies, for each successive image in the movie, the exact position and

size of actual ”rear of car” positive detections that a perfect detector should

output.

2.3. AdaBoost training

For detector training, we use the adaBoost algorithm [8], as in [2] and most

subsequent papers. AdaBoost requires a ”weak learner”, i.e. an algorithm

which will select and provide, for each adaBoost step, a ”good” feature

(i.e. with a ”low-enough” weighted error measured on the training set).

The weak learner used by Viola and Jones is just an exhaustive search of

all ≈ 180, 000 possible features in their set of features. But in our work,

exhaustive search is definitely not possible, because we use ”control points”

features as described in 2.1, and the total number of possible different

features is absolutely huge in this family (there are more than 1035 of them

for our 36 × 36 detection window size). One of the goals of the present

work is precisely to present in detail our weak-learner heuristic specifically

designed for efficient exploration of this huge space.
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2.4. Evo-HC hybrid search weak-learner

The general scheme of our custom-designed hybrid search is the following:

• we start with a first generation of 70 random simple features (i.e.

with only 2 positive and 2 negative points);

• at each generation:

(1) we select the 30 best features of the previous generation (those

with lowest weighted error on the training set);

(2) we apply to those 30 best features a hill-climbing consist-

ing in applying to each of them a maximum of 5 successive

specifically-designed ”mutations”, each mutation being can-

celled if it did not improve the feature;

(3) we complete the population with 40 new simple random fea-

tures;

• we stop the algorithm when there has been no improvement during

40 consecutive generations, and choose the best feature of the last

generation as the ”good” selected feature for this adaBoost round.

We call this custom exploration search evo-HC, where “evo” stands for

evolutionary, and “HC” for Hill-Climbing. Indeed our search algorithm is

largely driven by the “random mutation hill-climbing” step (2) where the

best features of the previous generation are further refined by several suc-

cessive only-improving “mutations”. And it is at the same time somehow

hybrid with an evolutionary search as for each new generation the 40 worst

features (among 70) are discarded and replaced by new random simple fea-

tures. It should be noted however that only selection (and no crossover)

occurs during our evolution. But, as found some time ago by Mitchell et

al. in [9], Random Mutation Hill-Climbing (RMHC) by itself outperforms

Genetic Algorithms in some difficult optimization problems.

The “mutation” operator is specifically designed for the control-points fea-

tures. It is a random choice between one of the 6 following alterations:

• randomly moving one of the existing control-points within a maxi-

mal radius of 5 pixels around its initial position;

• add a new random (positive or negative) control-point;

• remove one of the existing control-points;

• change the working channel (red, blue or green) of the feature;

• change the feature ”margin” value θ (see section 2.1) by ±2;

• change the working resolution (full, half or quarter) of the feature.
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Figure 3. Monitoring of adaBoost training using our evo-HC search: on the left, typical
training curve during training; on the right, evolution of ROC curve during training
(generally moving left and up along boosting iterations).

3. Results

As is customary for assessment of detectors (cf. for instance [2]), most

of our evaluations and comparisons are based on the ”Receiver Operating

Characteristic” (ROC) curves of detectors. These ROC curves are graphical

plots of sensitivity vs. specificity (here, positive detection rate vs. false

detection rate) as the discrimination threshold is varied (see e.g. [10]).

3.1. Detection performance with our evo-HC weak-learner

Our training method works very well for the car detection problem, as illus-

trated by the very good ROC curve obtained for the 500-features detector

(see upper curve on right of figure 3). The positive detection rate for this

classifier is ≈ 95% for a false detection rate of 1 : 40, 000. The latter rate

approximately corresponds to one false detection per image frame in the

camera stream, as in our setup 33, 227 sub-windows of various locations

and sizes are tested in each image.
The typical computation time for adaBoost training on our 2204

car/non-cars examples set using our evo-HC search weak-learner is ≈ 28

minutes (on a Pentium IV 3Ghz) for each 100 boosting cycles (and thus

for each 100 features added). The total training time for a 500-features

detector is therefore ≈ 2.5 hours.

3.2. Comparing evo-HC to ”random search” weak-learners

In order to assess the exploration power of our evo-HC search weak-learner,

we conducted a systematic comparison with an alternative trivial weak-

learner: a simple random search. The latter is extremely simple: for each

adaBoost step, we simply try successively maxTrials randomly generated

features. Note that, contrary to what we do in our evo-HC, the feature



March 9, 2006 16:5 Proceedings Trim Size: 9in x 6in evoHC-Boost˙FLINS06

7

Figure 4. Comparison of detection performance attainable with our evo-HC search, to
that of detectors obtained using random search: left, the ROC curves of the latter are
always below, when comparing detectors with the same or a smaller number of features;
right, slow improvement of random-search detectors with increasing maxTrials, reaching
a maximum before the performance obtained with our evo-HC search.

randomization procedure naturally covers all possible features. The only

parameter of the random search weak-learner is maxTrials, the number of

randomly generated features for each adaBoost step.
It is clear from ROC curves on figure 4 that the detection performance of

the best detector using our evo-HC search weak-learner is definitely higher

than that of any of the detectors we obtained using random search weak-

learner. This is true not only for the most complex detector (i.e. with

500-features), but also for any given maximal number of features allowed

for the detector. Also, even though some detectors obtained with random

search with very high value of maxTrials produce “lower but acceptable”

detection performance, it should be noted that the corresponding training

time was already much higher (nearly 10 times) than the training time with

our evo-HC weak-learner.

4. Conclusions and discussion

In this paper, we have shown that adaBoost training with control-points

features and a specially-designed weak-learner (evo-HC, a hybrid of Hill-

Climbing and evolutionary search) can produce a very good ”car detector”

reaching 95% positive detection rate for 1 : 40, 000 false detection rate (i.e.

less than 1 false alarm per video frame).
Moreover, we have conducted a series of tests to compare these good

results to what can be obtained using an alternative very simple ”random

search” weak-learner. It was shown that it is apparently not possible (even

if increasing the number of tested features to values implying unreasonable

training times) to get as good a final classifier as the one that was obtained

using our evo-HC search weak-learner. It should also be noted that the
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training time of a 500-features detector on our ≈ 2000 images training set

is only ≈ 2.5 hours on a typical desktop. A deeper study and comparison

of our weak-learner with other sophisticated search algorithms should now

be conducted. Nevertheless, the evidences presented here already indicate

that our evo-HC search is indeed a quite efficient weak-learner, with good

exploratory power, allowing performant selection of several hundreds of dis-

criminative features among the ≈ 1035 possible “control-points” features.

Finally, as we had previously successfully applied our method for

training an acceptable face-detector [6], and a state-of-the-art pedestrian-

detector [7], it seems that our adaBoost training with evo-HC weak-learner

exploring “control-points” feature space can be an efficient and general

method for training visual detectors of any kind of objects.
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