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Abstract— This paper introduces a topological localization
algorithm that uses visual and Wi-Fi data. Its main contribution
is a novel way of merging data from these sensors. By making
Wi-Fi signature suited to FABMAP algorithm, it develops
an early-fusion framework that solves global localization and
kidnapped robot problem. The resulting algorithm is tested and
compared to FABMAP visual localization, over data acquired
by a Pepper robot in an office building. Several constraints
were applied during acquisition to make the experiment fitted
to real-life scenarios. Without any tuning, early-fusion surpasses
the performances of visual localization by a significant margin:
94% of estimated localizations are less than 5m away from
ground truth compared to 81% with visual localization.

Keywords: topological localization, kidnapped robot, low-
cost sensors, data fusion.

I. INTRODUCTION

A. Problem statement

This paper addresses the problem of indoor localization
for mobile service robotics. The current market trend con-
sists in a mass deployment of affordable mobile robots
interacting with humans. This raises the need for low-cost
solutions enabling those robots to: map their environment,
and constantly know where they are when they move in it.
Numerous projects have been proposed to solve the problem
of localization. However, most of these solutions are based
on the use of expensive sensors, such as laser range finders,
and are designed for specific platforms.

The need for low-cost localization solutions has focused
some research on the use of visual sensors. To achieve a long-
term and robust global localization, some algorithms describe
locations by their appearances [1]. We base our work on
the Fast Apperance-Based Mapping algorithm (FABMAP)
[2] that uses visual appearance to detect loop closures. This
algorithm achieves robust localization with a low rate of
false loop closure detection and can manage big maps by
employing an inverted-index [3].

However, localization algorithms using visual appearance
face the well-known problem of perceptual aliasing. Percep-
tual aliasing happens when two different locations share sim-
ilar visual appearance (see example on Fig. 1). This problem
is inherent in repetitive environment. A solution is the use
of a multi-sensor localization for disambiguating such cases.
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Fig. 1: Perceptual aliasing. Two distant locations in a building
share similar visual appearance. But the Wi-Fi signatures
received in these locations are different enough to distinguish
them.

Using Wi-Fi helps to disambiguate cases where many
locations have similar visual appearances. For example, cor-
ridors on opposite sides of a building, or at different floors,
have different Wi-Fi signatures but can share comparable
appearances. Recent work has introduced a way of including
Wi-Fi data in the FABMAP algorithm [4] (preprint), but it
does not benefit from advantages of both sensors.

In this paper, we introduce a novel way of merging visual
and Wi-Fi data in order to solve the global localization
and the kidnapped robot problems. We tested our algorithm
on Pepper robots, visible on Fig. 2. Because of real-life
uses, our approach aims to achieve localization tasks without
stopping other actions of the robot.

B. Related Work

In recent years, several indoor localization algorithms
based on Wi-Fi sensors have been introduced [6], [7], [8].
This popularity can be explained by two reasons. First, the
Wi-Fi coverage in urban environment is dense enough for
being used in localization task. Second, it is easy to equip
mobile robot with Wi-Fi sensor.

Visual and Wi-Fi data accuracy are complementary. Even
if Wi-Fi localization is less accurate [9], it does not suffer
from perceptual aliasing, visually dynamic or repetitive envi-
ronments. Several approaches take advantage of this synergy,
and use visual and Wi-Fi sensors to create a low-cost local-
ization. Most of work focusing on solving the localization



Fig. 2: Pepper robot: designed for making his interaction
with human being as natural and intuitive as possible. It has
been first presented in [5].

problem from these sensors uses particle filters for fusion
[10], [11]. However, the hypothesis strongly converge only
with motion. Other approaches are sequential, and usually
Wi-Fi guided. They define a set of possible locations from
Wi-Fi data, and perform visual localization over it [12].
Finally, some methods consist in choosing which sensor is
the most reliable for current estimation [13]. These two last
approaches are both likely to suffer from one misled sensor.

C. Contribution

Our main contribution is a novel way of merging Wi-
Fi and vision for localization tasks. We propose an early-
fusion process for combining visual and Wi-Fi data, that
takes no more inputs than classical FABMAP. In comparison
with related work, our approach looks for a compromise on
the current estimation by considering data from both sensors
together.

D. Paper organization

To this end, we use the FABMAP localization algorithm
briefly presented in section II. Section III defines a way to
make Wi-Fi data suited to FABMAP. Early-fusion process is
introduced in section IV, with other merging styles. Finally,
our experimental acquisitions and localization results are
presented and discussed in section V.

II. FAST APPERANCE-BASED MAPPING

FABMAP [2], [3] discretizes the environment into a
succession of topological nodes. Each node constitutes a
location Li, and is associated with one or several visual
observations. Given a query image, the goal of FABMAP
is to compute the following value for each place Li in a
topological map:

p(Li|Zk) =
p(Zk|Li,Zk−1)p(Li|Zk−1)

p(Zk|Zk−1)
. (1)

Where Zi is the ith observation and Zi is the set of
all observations, up to i. Three terms can be identified
in (1): the likelihood p(Zk|Li,Zk−1), the normalization
term p(Zk|Zk−1), and a prior knowledge on the current
pose p(Li|Zk−1). Note that in our work, we do not use

this last term because we focus on the global localization
problem. The three next sub-sections respectively introduce
the computations of the observation Zk, the likelihood and
the normalization term.

A. Visual Appearance Description
The first step of FABMAP is to transform a query image

into a compact image description that is suited to the local-
ization context. This compact description is called observa-
tion vector, or appearance vector, and is noted Z in (1). To do
this, FABMAP uses the bag-of-words approach introduced
in computer vision in [14]. Keypoints are extracted on the
image, and their descriptors are then associated with words
of a vocabulary. In FABMAP, the observation Z indicates
which words are present on the query image.

For a vocabulary of N words, Z thus contains N binary
values indicating the presence or absence of the correspond-
ing word in the query. The vocabulary used comes from
an offline learning. It is usually built thanks to a clustering
method like the k-means, on keypoint descriptors extracted
from a lot of learning images.

B. Observation Likelihood
The second step constitutes the core of the algorithm

and computes the likelihood term p(Zk|Li,Zk−1), simpli-
fied into p(Zk|Li), assuming independence between current
and past observations, conditioned on the location [2]. Ap-
proaches using the bag-of-words framework can compute
similarity scores between queries and references thanks
to methods like the Term Frequency - Inverse Document
Frequency [15], or hierarchical vocabularies [16]. The main
contribution of FABMAP is the use of a Chow-Liu tree
[17] that captures correlations between the different words
of the vocabulary. This approach is motivated by the fact
that certain words are often detected on specific objects
and thus, tend to co-occur. The authors show that learning
these correlations helps to avoid false associations due to
perceptual aliasing [2]. It also helps to achieve correct
associations between images, even if they share few words
in common.

C. Normalization
In localization tasks, the normalization step allows to de-

tect unknown locations. In [2], the authors split p(Zk|Zk−1)
into two sums, one representing the visited locations M , the
other the unknown world M̄ :

p(Zk|Zk−1) =
∑
m∈M

p(Zk|Lm)p(Lm|Zk−1)

+
∑
u∈M̄

p(Zk|Lu)p(Lu|Zk−1). (2)

The second summation cannot be evaluated directly. The
authors of FABMAP propose to approximate (2) by:

p(Zk|Zk−1) ≈
∑
m∈M

p(Zk|Lm)p(Lm|Zk−1)

+ p(Lnew|Zk−1)

ns∑
u=1

p(Zk|Lu)

ns
. (3)



where, p(Lnew|Zk−1) corresponds to the probability of
being in a new location, and is a user-specified input of the
algorithm (set to 0.9 in [2]). The second sum of equation (3)
consists then in sampling an observation Z to create a place
model associated to unknown location. The sampling of Z
is realized from training set of ns images.

In addition to the vocabulary, the Chow Liu tree and the ns
samples, the authors of [2] list some user-specified inputs. In
our work, these parameters are set to the values specified in
[2]. Fig. 3 summarizes the successive steps of the algorithm.
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Fig. 3: Inputs of each steps of the FABMAP algorithm.

III. INCLUDING WI-FI DATA IN FABMAP
In the related literature [6], [9], a Wi-Fi signature -

sometimes referred to as a fingerprint - consists of a list
of visible Access Points (APs), each one being characterized
by its MAC address and its signal strength (Received Signal
Strength Indication - RSSI). Most Wi-Fi localization algo-
rithms collect Wi-Fi signatures during an exploration stage
then generate a map modeling the distribution of Wi-Fi sig-
nals in the environment. These approaches particularly suit
the topological localization of FABMAP, with the definition
of a correct framework. This section introduces the way Wi-
Fi information is integrated into FABMAP, following the
steps of Fig. 3.

A. Defining a Wi-Fi vocabulary

Each MAC address defines one Wi-Fi word. This choice
allows to keep the appearance description style of FABMAP,
that uses binary values to indicate the presence or absence
of visual words in query image. Here, values of Wi-Fi
observation vector ZWi−Fi indicate which APs are visible
in a Wi-Fi signature.

At a given location, Wi-Fi signal strength varies sig-
nificantly. To make their inputs more reliable, most Wi-
Fi localization schemes stay motionless for a while, and
compute mean and standard deviation of the RSSI coming
from each AP [6], [8]. In this paper, we choose to ignore the
strength information because of Pepper’s motion behaviours
and for simplicity. Potential usage of this information is
discussed in section VI and constitutes future work.

Finally, the main difference between visual and Wi-Fi
vocabularies is that it is not possible to know the APs a robot
is going to encounter in an environment before exploring it.
Therefore, it is not possible to define a global and complete
Wi-Fi vocabulary in a pre-exploration offline stage. The Wi-
Fi dictionary is computed after a first exploration and can be
extended when new APs become visible.

B. Tree Structure

Considering now that our robot has explored its environ-
ment and defined a vocabulary, we can build a Chow Liu tree
that catches correlations between Wi-Fi words. We learn the
correlations on the collected Wi-Fi signatures. However, in
order to avoid the learning of redundant correlations, we have
to ensure that Wi-Fi observation vectors come from different
places. Timestamps and odometry data can be used to check
this.

C. Normalization and virtual Wi-Fi locations

In the visual world, sampling an observation for normal-
ization is easy. To do this, training images coming from
offline learning are used. In the Wi-Fi world, employing
this trick is not so simple. One Wi-Fi vocabulary is specific
to one environment. Therefore, using real Wi-Fi signatures
collected in training environments does not make a lot of
sense since the computed observation vectors would only
be composed of 0. A solution is to simulate virtual Wi-Fi
signatures according to the collected data. To this end, we
use a random generator of Wi-Fi observation vectors.

In our measurements, the number of APs in a Wi-Fi signa-
ture follows a normal distribution for a specific environment.
We thus identify the mean µ and the standard deviation σ
on the number of APs perceived in the Wi-Fi signatures
collected during the exploration. To randomly generate ns
virtual locations, we repeat the two following steps:

1) randomly select a number of perceived APs following
the normal distribution N (µ, σ),

2) randomly choose Wi-Fi words in known and unknown
vocabularies of the same size.

With this formalism, FABMAP localization results based
on Wi-Fi data can be computed. However, using Wi-Fi data
alone shows poorer accuracy than visual-based localization.
Next section introduces how to take advantage of both visual
and Wi-Fi sensors.

IV. MERGING VISUAL AND WI-FI DATA

This section introduces the early-fusion process. To our
knowledge, this approach has never been studied for solving
the global localization problem using Wi-Fi and visual data.
Our methodology is shown on Fig. 4. The following sub-
sections discuss the interest of this approach, our choices
concerning the inputs of the algorithm, and present more
classical merging frameworks.

A. Late-fusion and Early-fusion

An intuitive way of merging localization results coming
from multiple sensors can be called the late-fusion. Each
sensor s provides a probability ps(Li|Zk

s ) of being in a
location Li knowing its observations Zk

s . For a multi-sensor
platform composed of two sensors s1 and s2, the result plf
from the late-fusion can be written as:

plf (Li|Zk
s1,s2) = α × ps1(Li|Zk

s1) ps2(Li|Zk
s2)

p(Li)
. (4)
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Fig. 4: Early-fusion framework, using visual and Wi-Fi data.

Where α ensures that
∑

i plf (Li|Zk
s1,s2) = 1. Focusing on

the global localization problem and considering that nM
locations have been mapped, plus one location, associated
to the unknown world, note that for every i, p(Li) = 1

nM+1 .
With the late fusion, each localizer gives a result according

to the perceptual area of its sensor. Then, a sensor misled
by perceptual aliasing can clearly pervert the system. In this
work, we propose to merge the data before giving it to the
localization algorithm. We realize thus an early-fusion. The
output probabilities of the algorithm are noted pef (Li|Zk).
The idea is to concatenate the observation vectors obtained
from visual and Wi-Fi sensors (Fig. 4). The early-fusion
asset is the computation of a compromise between the
different sensors.

B. Which correlations to learn for early fusion?

When merging Wi-Fi and visual data by early-fusion, the
question of which correlations to learn remains. We choose
to split the correlations learning. Instead of learning one tree,
two trees capture words that respectively co-occur in the
visual vocabulary and in the Wi-Fi vocabulary. This choice
can be explained by two reasons.

First, learning new correlations between all Wi-Fi and
visual words is not obvious. For instance, to learn new
visual correlations from nodes collected during exploration,
we have to ensure that all visual words of the vocabulary
would have been seen at least once during the exploration.
In practice, this is not possible.

Second, the normalization step encourages this choice.
Indeed the visual and Wi-Fi unknown world is too difficult
to simulate whereas using split learning allows to simply
concatenate unknown visual and Wi-Fi samples.

Even if the correlations learning is split, we show in
section V that early and late fusions generate different results.
Both fusions are also compared to more classical Wi-Fi and
vision merging style: the sequential fusion.

C. Sequential fusion

Two methodologies can be identified when using sequen-
tial fusion with Wi-Fi and visual data:

1) Wi-Fi-guided fusion, in which a visual localization is
realized over possible locations determined from Wi-Fi
data;

2) Wi-Fi check fusion, where the result from visual
localization must be confirmed by Wi-Fi data.

These approaches use the fact that Wi-Fi localization is
less accurate than the visual one, but never produces aberrant
results.

However, FABMAP normalization style enables the algo-
rithm to detect loop closures with the assumption that no one
has been missed. For each query, FABMAP detects at most
one loop-closure. To make these sequential fusions work, we
need Wi-Fi localization to furnish a set of several possible
locations. The FABMAP normalization term introduced in
[18] has been used then for Wi-Fi localization in our work.

V. EVALUATION

A. Experimental conditions

We evaluated our algorithm on data acquired by a Pep-
per robot. Pepper is a social robot designed by SoftBank
Robotics. It can be found in Japanese shops, where it holds
receptionist or demonstrator functions. One of Pepper’s key
strengths comes from the interaction it has with users. There-
fore, practical uses of Pepper result in special constraints
applied during acquisitions.

The environment used is the office floors of SoftBank
Robotics Europe, that are mainly composed of open spaces
(see map and example images on Fig. 1). This facet is
significant considering the propagation of Wi-Fi signals. In
such environments, Wi-Fi signatures are more difficult to
distinguish because there are no obstacles creating important
changes. Note that possible uses of Pepper in large indoor
environments, like shops, malls or airports, have motivated
our choice of this testing conditions.

Acquisitions were done by driving Pepper thanks to
a remote control. During the acquisitions, the robot au-
tonomously acquires images every 2s, and Wi-Fi signatures
every 10s. Several constraints come from the fact that we
want the localization to be natural. For instance, blurry
images result from the fact that we do not want the robot to
stop for image acquisitions. Moreover, motion behaviours
of the robot are kept. When navigating, Pepper looks in
the direction of its motion. So in straight lines, images are
not taken in discriminative perpendicular directions (left or
right), but in the direction of movement.



The paths we run are collected over two months and multi-
ple floor levels. They constitute a set of 4136 images and 556
Wi-Fi signatures, composed of 553 MAC addresses. The total
covered distance is 1.2km long. We also pay attention to the
diversity and reality of our acquisition scenarios: occlusions,
dynamic environment, realistic velocity, user interactions,
blur, various times of day, etc.

Finally, the visual vocabulary used was learnt from 3000
images of indoor scenes, extracted from database presented
in [19].

B. Annotations: initial exploration and localization

Our formalism defines topological nodes by an associated
couple (image ; Wi-Fi signature). In practice, images are
collected faster than Wi-Fi signatures. Therefore, we choose
to associate acquired images with Wi-Fi signatures under
two scenarios: mapping and localization. During the initial
exploration phase, we associate images to the estimated spa-
tially closest Wi-Fi signature. During the localization tests,
images are associated to the last Wi-Fi signature acquired.

We manually annotate the positions of all collected im-
ages, resulting in ground truth of node positions. The dif-
ferent acquisitions are split in two: 40% are used for map
creation and 60% constitute our queries.

Note that all Wi-Fi correlations are learnt over examples
used for the mapping.

C. Evaluation metrics

For each query, we consider the highest score of the
algorithm as the current localization in the map:

Lmax = argmax
Li,∀i

p(Li|Zk) (5)

To evaluate accuracy, the Euclidean distance between the
annotated positions (x, y, z) of the query and the associated
mapped place Lmax is computed. When Lmax = Lu,
corresponding to unknown location, our evaluation considers
the result as rejected.

Next sub-sections discuss the produced results. We use
the FABMAP2.0 algorithm [3], and adapt the open source
implementation of [20] to our use. For the set of queries,
localizations are computed using visual data only, Wi-Fi data
only, and different merging styles: early and late fusions,
and the two sequential fusions presented in Sect. IV-C.
Sub-section V-D presents the obtained results for global
localization. The long-term performances of the different
algorithms are also tested in sub-section V-E.

D. Global localization results

In this experiment, the robot has entirely mapped a floor
of an office building. The robot is then placed in it for global
localization.

Results plot on the following figures show:
• rate of correct localizations: measured as the cumulative

distribution of distances between estimated localizations
and the ground truth (Fig. 5),

• rate of misplaced localizations: measured as the per-
centage of queries leading to estimated localizations
farther away from ground truth than a given distance
(Fig. 6).
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Results on Fig. 5 and Fig. 6 highlight the interest of
merging Wi-Fi and vision for localization tasks. On Fig. 5,
the early-fusion clearly outperforms classical FABMAP with
e.g. 94% of queries localized within 5m away from true
position, compared to only 81% for vision-only (see left
column of Tab. I). On Fig. 6, the rejection rate of sequential
fusion with Wi-Fi check reduces the error of this merging
style, but the price to pay is high: ”unknown localization”
answer is provided for nearly 1/5 of queries (18%).

However, early-fusion correctly localizes all the queries
within 23m and outperforms other introduced localizations
for d > 7m. Visual and sequential fusion with Wi-Fi check
localizations result in aberrant estimations localized farther
than 23m from ground truth. We extract in Tab. I resulting
values from early-fusion and Wi-Fi check localizations for



comparison with classical visual FABMAP.

Correct localization
rate (%) within

Misplaced localization
rate (%) away from

2m 5m 10m 20m 2m 5m 10m 20m

Vision 76 81 82 83 15 10 9 8

Wi-Fi check 74 78 79 80 9 4 3 2

Early-Fusion 85 94 98 99 15 6 2 0.4

TABLE I: Comparison of classical FABMAP with sequential
and early-fusion localizations.

E. Long-Term localization

We tested the long-term robustness of these algorithms
by spacing initial exploration phase and localization tests
one month apart. The obtained results reveal that visual
localization is more deteriorated than the Wi-Fi localiza-
tion. Small changes occurring in Wi-Fi signals, like new
or missing smart-phones mobiles APs, are not significant
enough for degrading the outcomes of Wi-Fi localization.
However changes in visual appearance, for example caused
by furniture moved, deteriorate the results of visual and
sequential localizations. Results in Tab. II show that our
proposed early-fusion with Wi-Fi enhanced FABMAP gives
the best compromise between visual and Wi-Fi data.

Correct localization
rate (%) within

Misplaced localization
rate (%) away from

2m 5m 10m 20m 2m 5m 10m 20m

Vision 52 60 63 66 34 26 23 20

Wi-Fi check 50 58 61 63 21 13 10 8

Early-Fusion 67 85 94 99 33 15 6 1

TABLE II: Long-term localization results: initial exploration
phase and localization tests one month apart.

VI. CONCLUSION AND DISCUSSION

In this paper, we have introduced an early-fusion process
that consists in merging visual and Wi-Fi data for localization
tasks. Based on the FABMAP algorithm, a low-cost solution
for solving global localization and the kidnapped robot
problem has been created. We have tested our algorithm
on a Pepper robot, in realistic situations and practical uses.
Without any tuning, our approach has significantly improved
the localization accuracy in repetitive indoor environment
in comparison with classical visual FABMAP: 94% of es-
timated localizations are less than 5m away from ground
truth, compared to 81% with visual FABMAP.

An interesting extension would be the integration of Wi-
Fi signal strengths into the FABMAP formalism. A solution
for this would be the discretization of intensity on binary
values to fit within the FABMAP appearance description
style. This approach could thus expend the Wi-Fi vocabulary,
and improve the localization accuracy.
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