
 
 

 

 

3D keypoint detectors and descriptors for 3D objects recognition  
with TOF camera 

 

Ayet Shaiek ∗a, Fabien Moutarde †a 

aRobotics laboratory (CAOR) Mines ParisTech 60 Bd St Michel, F-75006 Paris, France;            

ABSTRACT   

The goal of this work is to evaluate 3D keypoints detectors and descriptors, which could be used for quasi real time 3D 
object recognition. The work presented has three main objectives: extracting descriptors from real depth images, 
obtaining an accurate degree of invariance and robustness to scale and viewpoints, and maintaining the computation time 
as low as possible. Using a 3D time-of-flight (ToF) depth camera, we record a sequence for several objects at 3 different 
distances and from 5 viewpoints. 3D salient points are then extracted using 2 different curvatures-based detectors. For 
each point, two local surface descriptors are computed by combining the shape index histogram and the normalized 
histogram of angles between the normal of reference feature point and the normals of its neighbours. A comparison of the 
two detectors and descriptors was conducted on 4 different objects. Experimentations show that both detectors and 
descriptors are rather invariant to variations of scale and viewpoint. We also find that the new 3D keypoints detector 
proposed by us is more stable than a previously proposed Shape Index based detector. 
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1. INTRODUCTION  

3D object recognition, an important research field, has been successfully studied in the case of a single viewpoint. 
Robustness to pose and viewpoint variations remains a challenging problem for objects recognition applications. 
Meanwhile, using new devices, such as time-off-light (TOF) 3D cameras, may be a step forward to provide robust 
geometric information about objects. 

 In this context, two components of an object recognition system are necessary: descriptions extraction phase where an 
interpretation of the image data is given, and the matching phase which consists of assigning an identity to the extracted 
descriptions. 

The existing approaches for solving this issue can be classified in two ways: 

- A group of 3D methods which suggest the use of the entire 3D model and base the recognition on the 
comparison of estimated model with reference models 1, and a group of 2D/3D approaches that project the 3D 
model into different 2D images 2, 3 and compute 2D features. A survey of 3D and multi-modal 3D+ 2D 
approaches has been done in 4. 

- A class of global methods , like the work of 5 which suggest to use volumetric part-based descriptions, and a 
class of local ones which describe local regions, as for example in 6 , and in 7 where Viola and Jones propose a 
set of  “rectangle” features. 

Local representations using keypoint have been proven to perform well in 2D recognition 8. Therefore, many recent 
researches have investigated in finding 3D detector and descriptor (eg: SIFT 2.5 9). 

The proposed approach is in the line of Chen and Bhanu’s work 10 who presented a local surface descriptor for 3D object 
recognition. In the work presented here, we use a depth camera “ZCam” (Figure 1) to capture four real objects (Figure 2) 
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from different distances and viewpoints in order to characterize their 3D shape. In the following, we will focus on the 3D 
keypoint detection and the 3D descriptor extraction. 

 
Figure 1. The time-of-flight (TOF) camera used produces depth video with the following principle: measure of time 

delay between infrared pulse emission and the reception of its reflection. 

 

 

 

 
Figure 2. The range images of the four objects of our dataset. 

 

2. METHODOLOGY 

  

2.1 General scheme of the method 

Pre-processing 
Our methodology is the following: objects are placed on a turning tray which is pivoted to 5 positions (0°, 25°, 50°, 75° 
and 100°) in front of the camera during each record. Then, we repeat this for 3different distances of the camera to objects 
(at 50cm, 80cm and 110cm). The 3D camera produces 30 depth images/s, and the typical total recording time is 3.3 
seconds, therefore, the total number of frames is fixed to 100 for each record.   



 
 

 

 

 
Figure 3: Relation between true 3D point (X,Y,Z), and the (x,y) position of depth pixel in the focal plane. 

 
 The camera’s output is a depth grayscale image that we convert into a cloud of 3D points. The computation of the 3D 
points from the depth image is straightforward, as illustrated in Figure 3: for each pixel at line i and column j, we first 
compute (using the actual pixel width 0.0112 mm on the sensor), its (x,y) position in the focal plane; from this and the 

focal length f, we can deduce the normalized directing vector	�� = 	 (�,�,	)

���	��	�
; the true 3D point (X,Y,Z) is then 

obtained as (�, �, �) = �. ��  where the distance D depends directly on the grayscale value g of the depth image by 

�� =	�� +	�� .
�����
���

 ; where �� 	���		�� are respectively the primary distance (i.e. minimal range distance) and the 

primary width (i.e. difference between maximal and minimal range distance), which can both be tuned manually on the 
camera.  

One of the problems with TOF depth cameras is the rather high level of noise of the output data. The absolute precision 
of each depth pixel is ~1cm only (and quite dependant on the reflectance of the object material), and there can be an 
offset of absolute distance as high as 6cm, according to our tests. We partly overcome the noise problem by averaging 
the 100 frames recorded during 3s into one depth image that we crop after to remove outliers in boundaries. 

 
Method 

 Once the 3D points cloud have been generated from the mean frame, we select salient 3D points before computing a 3D 
descriptor of regions around those detected points. Our method is based on differential geometry to describe the shape of 
objects. Particularly, we consider surface normals and curvatures which measure how the surface bends in different 
directions at one point. 

 In prectice, a uniform n x n lattice (grid) is used to sample the 2D cropped depth map (where n = 10). Then, each cell is 
subdivided into r x r sub-regions (r = 3).  Using points belonging to this window, we fit a quadratic surfaces to the r x r 
patchs, of the form f(x,y) = ax2 + by2 + cxy + dx + ey + f, and estimate the parameters of the quadratic surface with the 
least square method. That allows us to compute differential geometry and extract the surface normal, Gaussian curvature 
and principal curvatures at each patch. Using a factor quality based on curvatures, we select feature points with the 
largest shape variation. Then, the shape index values are cumulated and the histogram of angles between the normal of 
reference feature point and that of its neighbouring regions is computed. Hence, our descriptor is the combination of the 
two histograms forming a 17+34=51 dimensional vector. To evaluate the proposed detector and descriptor, comparison 
with Chen’s detector and descriptor in term of stability and invariance to the 5 viewpoints and the 3 scales of the same 
object has been done. 

 
2.2  Keypoint detectors 

The first detector is based on a keypoint quality measure introduced by Mian et al. 11. After the sampling step (100 cells), 
we associate at each cell k a quality measure Qk is given by: 
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where k1p and k2p are maximum and minimum principal curvatures, respectively. Summation, maximum and minimum 
values are calculated over the r x r sub-regions. Absolute values are taken so that positive and negative curvatures do not 
cancel each other; positive and negative values of curvatures are equally descriptive. Keypoints are ranked according to 
this measure and a threshold is chosen to select the best ones. 

The second detector is the one proposed in 10, and uses the shape index (Ip) for feature point extraction. It is a 
quantitative measure of the surface shape at a point p, and defined by Eq. (2)  
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With this definition, all shapes are mapped into the interval [0, 1] 12. Larger shape index values represent convex surfaces 
and smaller shape index values represent concave surfaces. 

The central point is marked as a feature point if its shape index Ip satisfies Eq. (3) within an r x r window 

Ip  = max of shape indexes and Ip >= (1+:) * µ; 

or Ip  = min of shape indexes and Ip <= (1- ;;;;) * µ; 

where µ is the mean of shape index over the l*l values and      0 <= : , ;;;;  <= 1                  (3) 

In Eq. (3) :, ;;;; parameters control the selection of feature points. 

 
2.3 Keypoint descriptors 

Around each selected keypoint P, a local patch R is constituted of the r x r neighbours. For every point Ri belonging to R, 
we compute its shape index value and the angle θ between the surface normals at the feature point P and Ni. Then, we 
form, first, a 2D histogram by accumulating points in particular bins along the two axes based on Eq. (4) which relates 
the shape index value and the angle to the 2D histogram bin (hx, vy). One axis of this histogram is the shape index which 
is in the range [0, 1]; the other is the cosine of the angle (cos θ) between the surface normal vectors at P and one of its 
neighbours in R. It is equal to the dot product of the two vectors and it is in the range [-1, 1]. In Eq.( 4), (hx, vy) are the 
indexes along the horizontal and vertical axes respectively and (bx, by) are the number of bins along the horizontal and 
vertical axes, respectively. 
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 This descriptor encodes the occurrence frequency of shape index values vs. the cosine of the angle between the normal 
of reference feature point and that of its neighbours.  

The second proposed descriptor concatenates the histogram of the cosines of angles between normals and the histogram 
of the shape index into 1D vector. The unique axis of the histogram is composed of bx + by bins. (cf. Figure 4). 

 (a) (b)  
Figure 4. (a) Concatenate descriptor, (b) Combined descriptor 

 

3. EXPERIMENTAL RESULTS 

 
We performed our experiments on our own database constituted of 4 objects (horse, car, dinosaur, man doll) captured 
with the TOF camera which has a spatial resolution of 320 x 240. The computation time of keypoint detection and 
description phases is about 2.5s for 50 keypoints. In the following, we propose to evaluate our detector and descriptor in 
terms of stability and descriptiveness. 



 
 

 

 

3.1 Keypoint stability 

In order to measure the repeatability of detected keypoints between different views/scales, we compute the distance of 
every keypoint in the rotated/scaled point cloud of view 1 to the nearest neighbor keypoint detected in view 2. Figure 5 
illustrates the two plots of keypoint repeatability between the four initial views of the four objects and their respective 
scaled and rotated views with the quality factor based detector (FQD) and the shape index based detector (SID). The y-
axis shows the percentage keypoints of the transformed views which could find a corresponding keypoint in the initial 
view within the distance shown on the x-axis. Results show that the percentage of keypoints repeatability is more 
important for the FQD than the SID and repeatability reaches 100% at a nearest neighbor error of ~7.5 mm for FQD and 
at ~10mm for SID. This result suggests that quality factor detector has slightly higher repeatability than the shape index 
detector.  

 
Figure 5. Keypoint identification repeatability between different scales and views for the two detectors:  

quality factor based detector (FQD) and shape index based detector (SID). 

 

 (a)     (b)  

(c)  (d)  

Figure 6. Illustration of the greater stability of Factor Quality Detector (FQD) vs Shape Index Detector (SID , by positions of detected 
keypoints (shown with green arrows) for two different scales in horse 3D points cloud: top line, detection with FQD, at respective 

scales 50 (a) and 80 (b); bottom line, detection with SID, at respective scales 50 (c) and 80 (d). 
 



 
 

 

 

Figure 6 illustrates the relative stability of keypoint’s positions when varying scale for the same object. 

In addition to the keypoint detection role, the quality measure provides a means of selecting the best required keypoints. 
A threshold is used to keep the keypoints with Qk greater than the threshold. Figure 7 shows keypoints detected on one 
view of horse at different cutoff thresholds of the quality Qk. Notice that as the threshold is decreased, more and more 
keypoints appear at less curved parts of the model.  

 

 

Figure 7. (a)Pointcloud of the horse, Qk > 0, KpNb (the number of  keypoints) = 53, (b) For Qk > 300, KpNb = 44  
 (c)  For Qk > 7000, KpNb = 21  (d)  Qk > 17000, KpNb = 11 

 

3.2 Descriptor stability 

We employ a rank distribution metric for evaluating the stability of a keypoint descriptor model 13. This measure gauges 
the probability of finding a matching descriptor in the set of k-nearest neighbors as a function of k. To compute the rank 
distribution, we fix our match set M of descriptors between descriptors in view 1 and those of view 2. Then, we consider 
every pair of descriptors (i, j) in the match set M, and count the number of descriptors k in descriptor set of view 1 such 
that || i – k ||L2 < ||i – j ||L2. 

Results are performed on the point cloud of the four objects at view angles 0°, 25°, 50° and 100° and at scales 50, 80 and 
110. 

After selecting n points and computing their descriptor in view 1,  rotation of the n points is applied in order to recover 
their position in view 2 and compute their descriptor. Thus, the descriptor stability could be evaluated by counting the 
number of points in view 2 which the closest descriptor distances corresponds to the initial point in view 1.The same 
process is done for scale. We compute the positions of keypoints in scale 2 corresponding to the detected keypoint in 
scale 1 by applying a homothetic transformation. We plot the mean of curves representing the evolution of the number of 
correct matching keypoint descriptor as a function of the number of K nearest descriptors.  

As illustrated in figure 8, according to this metric, the combined model slightly outperforms the concatenate one for most 
values of K, including small ones which are the most relevant.  

 



 
 

 

 

 
Figure 8. Rank distribution for each of the two descriptor models (concatenate, combined). The plot shows the probability of finding 

the correct match for a descriptor within the group of the k nearest neighbors in the initial keypoint set. Right plot is a zoom on region 
for small K values. 

 

3.3 Descriptiveness of the descriptors 

In order to recognize one object appearing at different orientations or scales, the used descriptors must keep quite similar 
values whatever the considered view. Let HI		be the vector formed with values	J!,I,	J�,I	,	JK,I, JL,I	,	where J>,I is the 
standard deviation of the jth descriptor values obtained for the ith object. To obtain close values for the same object, the 
mean value , HM���� of HI		, must be minimized. In order to discriminate objects, the used descriptors must present quite 
different values to describe separate objects. Let NI		be the vector formed with values O!,I, O�,I	, OK,I , OL,I	, where 
O>,I 	the mean value of the jth descriptor values obtained for the ith object. To discriminate objects, the standard 
deviation of NI		, JPQ		, must be maximized. Consequently, the quotient JPQ		/	HM��� , which have been used in 14, is a 

criterion which can characterize the descriptor performance. 

Table 1 presents the concatenate and the combined descriptor performance regarding to the previously mentioned 
criterion for four objects of the database. This quotient is slightly more important when using the combined descriptor. 

 

Table 1. Descriptor performance 

 Concatenate descriptor Combined descriptor 

 

Quotient (JPQ		/	HM���) 

 

 

5.4148e-005 

 

6.3784e-005 

 

The other criterion proposed to compare the distinctive power of the first representation with the second one is the 
coefficient of variation which is equal to the standard deviation divided by the mean 15. The coefficient of variation 
encodes variability relatively to the mean and is used to compare the relative dispersion in one type of data with the 
relative dispersion in another type of data. 

The diagrams of Figure 9 compare the dispersion of the two tested descriptors. We note that in high values of coefficient 
of variation the combined descriptor curve is above the concatenate descriptor curve, which supports the conclusion that 
the combined descriptor is more descriptive than the concatenated one.  



 
 

 

 

One reason to explain this result is the resolution of histogram bins in the combined descriptor which is higher (17*34 = 
578) than the concatenate descriptor one (17+34=51).Note that increasing too much this resolution will not necessary 
improve the results; the models will just fit more noise if each dimension is not supported by a reasonable portion of data 
points. 

 

 

Figure 9. Average of the coefficient of variation for the two representations (concatenate and combined) for the four objects. 

 

4. CONCLUSIONS AND PERSPECTIVES 

We originally assumed that computing curvatures on the point would have allowed us to obtain stable 3D keypoints 
which describes parts of object with noticeable shape variation. Experimentations reported here showed this assumption 
as relevant. We initially believed that using the shape index would make it possible to encode the convexity and 
concavity of the surface. We therefore proceeded with our tests to confirm this assumption. It has often been suggested 
that combining shape index and angles of normals would make it possible to form an invariant descriptor. Trials carried 
out to test this assumption proved such to be the case. 

The experiments presented here indicate higher stability of 3D keypoints selected with a new quality criteria based on 
curvature under viewpoint variation. Undergoing experiments also indicate higher stability under scale variations. 
Regarding the descriptor, our analysis suggest that combined ShapeIndex-NormalAngles  has more stability and 
descriptiveness than the concatenate version.  

This new proposed 3D keypoint detector and the combined ShapeIndex-NormalAngles 3D descriptor, therefore, has the 
required properties to allow correct recognition of 3D objects whatever their pose, and distance, thus helping to provide 
semantic meaning to a complex scene. As we have seen, this result can be explained by the use of differential geometry 
which permits us to describe the local variation of the surface. It is also likely that if we try combining other 3D 
descriptors, descriptiveness will be improved. Nevertheless, attention should be paid to the computation time cost for 
best match searching that could be induced by high dimensionality of descriptor. Forthcoming investigations include 
tests of our approach on more objects, including public databases, and verification of the performance of these 3D 
keypoints as a tool for object recognition and categorization. 
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