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Abstract. In this paper, we propose a new 3D object recagninethod that
employs a set of 3D keypoints extracted from polaud representation of 3D
views. The method makes use of the 2D organizatioange data produced by
3D sensor. Our novel 3D interest points approalibsren surface type classifi-
cation and combines the Shape Index (SI) - cun&=(@ map with the Gauss-
ian (H) - Mean (K) map. For each extracted keypanbcal description using
the point and its neighbors is computed by jointing Shape Index histogram
and the normalized histogram of angles between alstrniThis new proposed
descriptor IndSHOT stems from the descriptor CSHQ®Idr Signature of
Histograms of OrienTations) which is based on tefinition of a local, robust
and invariant Reference Frame RF. This surface pigshriptor is used to find
the correspondences between query-model view paieffective and robust
way. Experimental results on Kinect based datasetpresented to validate the
proposed approach in view based 3D object recagniti

Keywords: Depth Image, 3D Keypoints detector, Mean Curvat@ejssian
Curvature, Shape Index, HK Map, SC Map, SHOT DesariphdSHOT.

1 Introduction

There has been strong research interest in 3D tolgeognition over the last decade,
due to the promising reliability of the new 3D aigifion techniques. 3D recognition,
however, conveys several issues related to the mnwadunformation, class variabil-
ity, partial information, as well as scales andwgeints differences are encountered.
As previous works in the 2D case have shown, locethods perform better than
global features to partially overcome those prolsle@lobal features need the com-
plete, isolated shape for their extraction. Exampleglobal 3D features are volumet-
ric part-based descriptions [1]. These methoddem® successful when dealing with
partial shape and intra-class variations while rieimg partially robust to noise, clut-
ter and inter-class variations. The field of 2D rRaif-interest (POI) feature has been
the source of inspiration for the 3D interest-ppidetectors. For example, the Harris
detector has been extended to three dimensioss,ifif2] with two spatial dimen-



sions plus the time dimension, then in [3] whiclscdisses variants of the Harris
measure and recently in [4] where a 3D-SURF adiaptés proposed. The 3D shape
of a given object can be described by a set ofl lfe=ures extracted from patches
around salient interest points. Regarding effici8Bt descriptors, the SHOT de-
scriptor [5] achieves both state-of-the-art robestnand descriptiveness. Results
demonstrate the higher descriptiveness embedd8H@MT with respect to Spin Im-
ages [6], Exponential Mapping (EM) and Point Signes (PS). Given the local RF,
an isotropic spherical grid is defined to encodatigfly well localized information.
For each sector of the grid a histogram of nornmldefined and the overall de-
scriptor SHOT results from the juxtaposition ofgléiistograms.

Our proposed new method aims to detect salientdiatgpthat are repeatable under
moderate viewpoint variations. We propose to useeasure of curvature in the line
of Chen and Bhanu’s work [7] and construct a pad#tieling to classify different
surface shapes [7, 8] using both mean-Gaussiaratties (HK) and shape index-
curvedness (SC) coupleBhus, we select keypoints according to their Istaface
saliency. Furthermore, we suggest a novel descrigtdbed IndSHOT, that empha-
sizes the shape description by merging the SHOTrigtsr with the Shape Index
histogram. The complete recognition system witledtn, description and matching
phases is introduced in section 2. The proposetiodds then evaluated in section 3.

2 M ethodology

2.1. Resampling of the 3D Points Cloud

As we address a recognition scenario wherein oriyviews are matched, we deal
with some views of the models from specific viewsi In the work presented here,
we exploit the lattice structure provided by thaga image. First, we search the co-
ordinates of the maximum and minimum points at is@nd y-axis in the sample,
and build a bounding box based on the two limingoiUsing thei(,j) coordinates of
each point in this box, we smooth the initial 3Dmpaloud by resampling down to
1/span of its original point density in order to avoidise perturbation. The smooth-
ing process generates new points correspondinigetaverage of points belonging to
a rectangular region with a span in the x and gdfion. Then, we construct a mesh
using the new vertices. The x and y spans are ptiopal to the density of points and
to a fractionr; of the bounding box dimensions, so as to makenmethod robust to
different spatial samplings and to scaling. In approach, neighbour points are given
by a spherical region around the point, with a supmdiusR proportional to a frac-
tion r, of bounding box diagonal. In practice, we adjust algolynomial surface to
the selected neighborhood. CGAlibrary is used for curvature computation. An
advantage of subdividing the point cloud in loaadions is to avoid mutual impact
between them.

2.2. Keypoint Detectors

The aim of this step is to pick out a repeatable salient set of 3D points. Principal
curvatures correspond to the eigenvalues of thesigiesnatrix and are invariant un-
der rotation and translation. Hence, we proposastlocal curvatures which can be
calculated either directly from first and secondivdives, or indirectly as the rate of
change of normal orientations in a local contegfiae. The usual pair of Gaussian
curvature K and mean curvature H only provides ar pepresentation, since the val-
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ues are strongly correlated. Instead, we use tlmeooinposed form with curvature
based quantities. In the following, we first intumeé state-of-the-art detector methods
based on shape index, HK and SC classificatiom tie present the principle of our
new detector.

Shape Index. This detector type was proposed in [7], and tiseshape indexg(p)
for feature point extraction. It is a quantitativeasure of the surface shape at a point
p, and is defined by (1),
51—1 1>< tkzl’+k’2’ 1
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where I%p and Igp are maximum and minimum principal curvatures, eesipely and
arctg = arctangent. With this definition, all shapes are mapped ith® interval [0, 1]
where every distinct surface shape correspondsunigue value of Sl (except for
planar surfaces, which will be mapped to the v@lite together with saddle shapes).
Larger shape index values represent convex surtamgsmaller shape index values
represent concave surfaces. The main advantadesofmeasure is the invariance to
orientation and scale. A point is marked as a feapwint if its shape index Bbatis-
fies (2) within point neighbors,
SI, = max(SIy) ; k € neighbors and SI, > (1+a)xu
or
SI, = min(SIy) ; k € neighbors and SI, < (1 —p) X u
2
whereyp is the mean of shape index over the Sl point rfEighvalues and) < «,

B < 1. In above expression (2), paramataand S control the selection of feature
points. We denote this detector by SID.

HK and SC Classification. The idea here is to build shape classificaticacspising
the pair mean-Gaussian curvatures (HK) or the ghape index-curvedness (SC).
Typically, for HK classification, we use the typenttion Tp used in LSP descriptor
[7] that associates to each couple of H and K \&&uanique type value (4),

+1  ifX> ey,

T =143 (1+sgne, (D)) +(1=sgnc, (K)); sgne, (0] 0 i IXI< ey (&)
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wheree, andeg are two thresholds over the H and K. Nine regiges$ are defined.

In the shape index-curvedness (SC) space, S ddfineshape type and C defines the
degree of curvature and is the square-root of #wation from flatness. Similarly to
HK representation, the continuous graduation ofiSd&vides surface shapes into 9
types. Planar surfaces are classified using thal@ev We define a type functidy

(5) that associates a unique type value to eachleamf Sl and C values (i.e values
between 0.8125 and 0.9375 correspond to domeSgnd 7 ),

Sp =0ifC < g
else 5)
S, €[1,8]; Sle[01].



For both classifications, salient regions are setbas those of one of the 5 following
types: dome, trough, spherical, saddle rut andleaifiye regions. More details are
givenin [9, 10].

Combination of Criteria. Theoretically, the two classifications HK and Siusld
provide the same result; therefore we suggest aimpithe two criteria to increase
reliability. In fact, our result will be validatedith two measures of keypoints detec-
tion. After labeling points with a pair of valug,( S,), points with salient type pair
are selected, in other words, if the two labelgespond to the same of the 5 salient
region types previously mentioned. Moreover, irs tharadigm, plane surfaces aren't
taken in account. So, we chose to select, in andit those 5 surface types, planar
regions. We note this detectois€_HK». Then, points with the same pair value are
grouped using the connected component labeling.n€divity is carried out by
checking the 8-connectivity of each point. Finatlye centers of the connected com-
ponents are selected as keypoints. We also prdpoger combination by ranking
the selected keypoints according to their curveslivasue. The point with the maxi-
mum value of curvedness over the selected keyp@mtisosen to represent each con-
nected component. In the case of planar regiofsg aumber of points are chosen
and are not all really representative of the saljein order to have a good distribu-
tion of interest points in the object surface, pheposed idea here is to cluster prese-
lected points according to their relative distamacel we threshold the distance be-
tween final keypoints (as a fraction of the bougdiox’s diagonal). We call the de-
tector combining the two criteria SC_HK_connex.

21 Keypoint Descriptors

After keypoints detection step, a 3D descriptorc@snputed around each selected
interest point. In the case of range data, the dantiorientation at a point is the di-
rection of the surface normal at that point. Histog-based methods are typically
based on the feature point normals. For examplealLSurface Patches [7] computes
histograms of normals and shape indexes of thegpb&longing to the keypoint sup-
port. The recently proposed SHOT descriptor aclsie@mputational efficiency, de-
scriptive power and robustness by defining 3D r&gida local Reference Frame
(RF). We briefly summarize here the structure ef 8HOT descriptor. The reader is
referred to [5] for details on the descriptor. Tihigoduction of geometric information
concerning the location of the points within th@port is performed by first calculat-
ing a set of local histograms of normals over tBev@lumes defined by a 3D grid
superimposed on the support and then groupinghiegei! local histograms to form
the final descriptor. The normal estimation is loase the Eigenvalue Decomposition
of a novel scatter matrix defined by a weighte@dincombination of neighbour point
distances to the feature point, lying within théresfical support. The eigenvectors of
this matrix define repeatable, orthogonal directiom presence of noise and clutter.
Furthermore, the CSHOT descriptor [11] is proposge@n amelioration of the SHOT
descriptor and makes profits from the 3D data @edcwith texture. The process of
combination succeeds to form more robust and dqesaerisignature.

Inspired by these state-of-the-art descriptors,cempute the histograms of shape
index values and angle values between the refersmdace normals at the feature
point and the neighbour@es and join the two histograms similarly to tlesign of

CSHOT descriptor. First of all, we accumulate paaunts into bins according to a



cosine function of the angle between the normalaah point within the correspond-
ing part of the grid and the normal at the feapot. For each of the local histo-
grams, a coarser binning is created for directose to the reference normal direc-
tion and a finer one for orthogonal directions.this way, small differences in or-

thogonal directions to the normal, which are thesinioformative ones, cause a point
to be accumulated in different bins. Secondly, shapgex values of the feature point
and those of its neighbours relying in the sphérstgport are grouped into bins.
Finally, we merge the shape index values and tlséneovalues into one descriptor
that we call INndSHOT. We perform the same procesm dahe CSHOT to juxtapose

the two histograms, where index shape histogramacep the color histogram (shown
in figure 1). In addition, the mean and standard deviatioshafpe index of the neigh-

bors around the feature point are computed. Tte fiascriptors, composed of (mod-
el ID, index shape + cosines histograms, surfage, tthe 3D coordinates of keypoint,
mean and standard deviation of shape index), aredstn be used in the matching
process.
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Fig. 1. IndSHOT representation

2.2  Matching and Recognition

We validate the proposed detector and descriptimgus view matching approach.

Here, we focus on solving the surface matching lprakbased on local features, by
point-to-point correspondences obtained by matchingl invariant descriptors of

feature points. Given a test object, we computeeasure of similarity between de-
scriptors extracted on the test view and thoséhefrhodels in database. The infor-
mation (model ID, histogram, surface type, the @@dt mean and standard deviation
of Sl) are used for matching process. Hence, foh dastogram from test view, we

find the best matching histogram from database vising the Euclidian distance. To
speed up the comparison process, we use a KD-reetilse. Two keypoints are

matched according to their histogram distance aed types of surface. For a test
object, a set of nearest neighbors is returned hfstogram matching. In the case of
multiple correspondences, the potential correspangairs are filtered based on the
geometric constraint: Euclidean distance betweerufes coordinates of the two
matched surface patches. The closest couple afrésain term of coordinates dis-
tance is the more likely to form a consistent cgpondence. A system of incremental
votes for each class gives the final matched class.



3 Experimental results
3.1. Data and Parameters

We performed our experiments on two real range dets. The first one is our own
dataset (Lab-Dataset) captured with the Kinect aeasd composed of 20 objects
(Ex. prism, ball, fan, trash can, etc) with 3 todifferent angle views per object (fig-
ure 3). The second data set is the public RGB-De@Hpatasét (figure 2). There are
51 common household object categories. In our éxgatation, we use 46 objects
with 25 views per object for only one object petegmry, which constitute a dataset
of 1150 views. The list of the following objectsdabelled from 1 to 46 respectively:
apple_1, ball_1, banana_1, bell_peper_1, bindercalculator_1, camera_1, cap_1,
cell_phone_1, cereal_box_3, coffee_mug_1, comblashlight 1, food_bag_1, food_box_1,
food_can_1, food_cup_1, garlic_1, greens_1, hametltd, instant_noodles_1, keyboard_1,
Kleenex_1, lemon_1, lightbulb_1, lime_1, marker mushroom_1, notebook_1, onion_1,
orange_1, peach_1, pear_1, pitcher_1, plate_1tgdtarubber_eraser_1, scissors_1, sham-
poo_1, soda_can_1, sponge_1, stapler_1, tomatoothbrush_1 and watter_bottle_The
numbers of feature points detected from these ramgges vary from 4 to 250, de-
pending on the viewpoint and the complexity of inploape. In our experimentations,
we have tried several values of our parametershanel we give the values achieving
the best performance;= 2, r,= 0.04, span = 5, a =0.05,5= 0.05,e4 = 0.009, g =

0.0001,¢ec = 0.01.
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Fig. 2. Examples of objects from the RGB-D Object Dataset?
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Fig. 3. The 20 objects of the lab-Dataset

3.2. Keypoint Stability

To evaluate detector performance, we illustratésaat comparison of keypoint posi-
tions detected witlsC_HK, SC_HK_connex, and Sl@etectors as shown on figure 4. It
reveals that the final selected points are quité vealized. The combining process
allows a better feature point filtering than SCH alone, as false detected points in
both are eliminated, and points with correct swefaype remain. Figure 5 illustrates
the relative stability of keypoint's positions detied with SC_HK_connexdetector

2 http://www.cs.washington.edu/rgbd-dataset/



when varying viewpoints for the same object. Clgarie recover almost same
keypoint positions in the different views. For aaqtitative analysis showing the su-
perior repeatability of our keypoints, we refer tleader to our previous publication

Fig. 4. Detected keypoints on trash can, fan and storage cupboard modelswith: SID in first
column, SC_HK in second column and SC_HK_connex in third column.

=

Fig.5. Detected keypoi'nt on faﬁ model with SC_H K_connex;
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3.3. Matching Result

The test protocol for object recognition from diffat angle views is the following:
for the RGBD dataset, we select one test view filoerN total number of views in the
dataset, and the N-1 views are used as the trag@fghis process is repeated for the
N views of the whole database. For the Lab-Datasetselect one to four random
views per object as the query and use the remaingws for training. We carry out
three experiments using the three descriptors SHCSKOT and IndSHOT. The
same evaluation is done for the two detectors $i® C_HK_connex. The overall
recognition rates, which correspond to the meaageition rate over the objects, are
given in table 1 for respectively our Lab-Datased ghe RGBD dataset. In figure 6,
the cross recognition rates between models ardagiesph in the confusion matrix.
Gray level determines the rate of the recognitB®lack is for high and white is for
low recognition rate. The overall recognition rate quite promising for our
SC_HK_connex method in comparison to the SID resulith 91.12% on the RGBD
dataset. This rate is achieved using the new pexpaescriptor INndSHOT, which
suggests that it is more descriptive than the CSIHHAI SHOT versions. The recogni-
tion rate in the Lab-Dataset is about 82%. Theaedsehind this lower result is the
high similarity between object shapes included liis tataset (two boots objects,
parallelepipedic shapes, cylindrical shapes, éticanother hand, the recognition rate
varies according to the view angle chosen for therg In fact, higher rates are
achieved when the query's view angle is given betwevo view angles in the train-
ing base.
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Fig. 6. Confusion matrix for the result of SC_HK_connex method on RGB-D object dataset
(Top) and on the Lab-Dataset (Bottom).

Tablel: Recognition rates for our Lab-Dataset (on left) and RGB-D object dataset (on right)
INdSHOT | SHOT | CSHOT IndSHOT | SHOT | CSHOT

SID 89.06% 70,75%| 77.77%
SC_HK 82.5% 67,5% 65% SC_HK | 91.12% 75,28% | 82.14%

The conjunction of thSC_HK_connex detector with the IndSH@€scripto seems
to provide morepertinent description of the local surface typol. It should also b
noted that the arall computation timefor our recognition process (detectione-
scription+ matchindeatures) is quite low (~0.7s), whicls a great advantagwhen
dealing with real time applicatic



4. Conclusionsand Per spectives

We have presented two main complementary contohsati 1/ an original 3D
keypoint detector, SC_HK_connex, based on the ddeammbining criteria; 2/ a new
3D keypoint descriptor, INndSHOT, based solely ampghcharacteristics.

The proposed detector combines SC (shape curvgdardsHK criteria with the
principle of connected components. It was alredtyws in our previous work that
the selected 3D keypoints are more repeatableftvaalternative detectors, and this
is confirmed here by the good inter-view matchiegahed in our experiments. The
proposed INdSHOT descriptor encodes the occurrsrgeiency of shape index val-
ues vs. the cosine of the angle between the nasfrafference feature point and that
of its neighbours. It seems to be significantly endescriptive than original SHOT
and CSHOT from which we have crafted it.

Finally, our new combination of SC_HK _ connex detect INndSHOT descriptor is
evaluated in challenging 3D object recognition sec&rs characterized by the pres-
ence of viewpoint variations and a few number efns on real-world depth data. The
outcome is very promising results, with 92% cormectognition on 46 objects from a
public dataset, and 82% on our own Lab-Datasetafuing 20 “everyday” objects,
some of which are rather similar one to another.

For the moment, measures of curvatures in our peeee calculated at a constant
scale level, so the feature’s scale is still ambigu To overcome this fact, we plan, as
a future work, to search for features at differsdle levels.

References

[1] Medioni, G.G. and Francgois, A.R.J., "3-D structui@sgeneric object recognition”, Inter-
national Conference on Pattern Recognition, 30-80@2

[2] Scovanner, P. and Ali, S. and Shah, M., "A 3-dinrema SIFT descriptor and its applica-
tion to action recognition”, ACM Multimedia, 357-3@2007).

[3] Vikstén, F., Nordberg, K. and Kalms, M., "Pointloferest Detection for Range Data",
ICPR, 1-4 (2008).

[4] Knopp, J., Prasad, M., Willems, G., Timofte, R. &fah, Gool L., "Hough Transform and
3D SUREF for robust three dimensional classificatidoceedings of the European Con-
ference on Computer Vision, 589-602 (2010).

[5] Tombari F., Salti S. and Di Stefano L., "Uniquergitures of Histograms for Local Sur-
face Description", ECCV, 356-369 (2010).

[6] Johnson, A.E. and Hebert, M., "Using spin imagesefticient object recognition in clut-
tered 3d scenes", IEEE PAMI 21, 433-449 (1999).

[7] Chen, H. and Bhanu, B., "3D free-form object recagnitin range images using local
surface patches", Pattern Recognition Letters, 38(152-126 (2007).

[8] Akagunduz E., Eskizara O. and Ulusoy I., "Scalecspapproach for the comparison of
HK and SC curvature descriptions as applied to olbgeognition”, ICIP, 413-416 (2009).

[9] Cantzler, H. and Fisher, R. B., "Comparison of HK &l curvature description meth-
ods", In Conference on 3D Digital Imaging and Manuig| 285-291 (2001).

[10] Koenderink, J. and Doorn, A. J., "Surface shape andrature scale", Image Vis.
Comput., 10(8), 557-565 (1992).

[11] Tombari F., Salti S. and Di Stefano L., "A combinegture-shape descriptor for enhanced
3D feature matching", ICIP, 11-14 (2011).

[12] Shaiek, A. and Moutarde, F., "Détecteurs de pdaliitgérét 3D basés sur la courbure”, In
COmpression et REprésentation des Signaux Audio@g@G&DRESA), 2012.



