
Fast 3D keypoints detector and descriptor  
for view-based 3D Objects Recognition 

 

Ayet Shaiek, and Fabien Moutarde 

Robotics laboratory (CAOR) Mines ParisTech 60 Bd St Michel, F-75006 Paris, France            

 

Abstract. In this paper, we propose a new 3D object recognition method that 
employs a set of 3D keypoints extracted from point cloud representation of 3D 
views. The method makes use of the 2D organization of range data produced by 
3D sensor. Our novel 3D interest points approach relies on surface type classifi-
cation and combines the Shape Index (SI) - curvedness(C) map with the Gauss-
ian (H) - Mean (K) map. For each extracted keypoint, a local description using 
the point and its neighbors is computed by joining the Shape Index histogram 
and the normalized histogram of angles between normals. This new proposed 
descriptor IndSHOT stems from the descriptor CSHOT (Color Signature of 
Histograms of OrienTations) which is based on the definition of a local, robust 
and invariant Reference Frame RF. This surface patch descriptor is used to find 
the correspondences between query-model view pairs in effective and robust 
way. Experimental results on Kinect based datasets are presented to validate the 
proposed approach in view based 3D object recognition. 

Keywords: Depth Image, 3D Keypoints detector, Mean Curvature, Gaussian 
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1 Introduction 
There has been strong research interest in 3D object recognition over the last decade, 
due to the promising reliability of the new 3D acquisition techniques. 3D recognition, 
however, conveys several issues related to the amount of information, class variabil-
ity, partial information, as well as scales and viewpoints differences are encountered. 
As previous works in the 2D case have shown, local methods perform better than 
global features to partially overcome those problems. Global features need the com-
plete, isolated shape for their extraction. Examples of global 3D features are volumet-
ric part-based descriptions [1]. These methods are less successful when dealing with 
partial shape and intra-class variations while remaining partially robust to noise, clut-
ter and inter-class variations. The field of 2D Point-of-interest (POI) feature has been 
the source of inspiration for the 3D interest-points detectors. For example, the Harris 
detector has been extended to three dimensions, first in [2] with two spatial dimen-
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sions plus the time dimension, then in [3] which discusses variants of the Harris 
measure and recently in [4] where a 3D-SURF adaptation is proposed. The 3D shape 
of a given object can be described by a set of local features extracted from patches 
around salient interest points. Regarding efficient 3D descriptors, the SHOT de-
scriptor [5] achieves both state-of-the-art robustness and descriptiveness. Results 
demonstrate the higher descriptiveness embedded in SHOT with respect to Spin Im-
ages [6], Exponential Mapping (EM) and Point Signatures (PS). Given the local RF, 
an isotropic spherical grid is defined to encode spatially well localized information. 
For each sector of the grid a histogram of normals is defined and the overall de-
scriptor SHOT results from the juxtaposition of these histograms. 

Our proposed new method aims to detect salient keypoints that are repeatable under 
moderate viewpoint variations. We propose to use a measure of curvature in the line 
of Chen and Bhanu’s work [7] and construct a patch labeling to classify different 
surface shapes [7, 8] using both mean-Gaussian curvatures (HK) and shape index-
curvedness (SC) couples. Thus, we select keypoints according to their local surface 
saliency. Furthermore, we suggest a novel descriptor, dubbed IndSHOT, that empha-
sizes the shape description by merging the SHOT descriptor with the Shape Index 
histogram. The complete recognition system with detection, description and matching 
phases is introduced in section 2. The proposed method is then evaluated in section 3. 

2 Methodology 
2.1. Resampling of the 3D Points Cloud  

As we address a recognition scenario wherein only 2.5 views are matched, we deal 
with some views of the models from specific viewpoints. In the work presented here, 
we exploit the lattice structure provided by the range image. First, we search the co-
ordinates of the maximum and minimum points at x-axis and y-axis in the sample, 
and build a bounding box based on the two limit points. Using the (i ,j) coordinates of 
each point in this box, we smooth the initial 3D point cloud by resampling down to 
1/span of its original point density in order to avoid noise perturbation. The smooth-
ing process generates new points corresponding to the average of points belonging to 
a rectangular region with a span in the x and y direction. Then, we construct a mesh 
using the new vertices. The x and y spans are proportional to the density of points and 
to a fraction r1 of the bounding box dimensions, so as to make our method robust to 
different spatial samplings and to scaling. In our approach, neighbour points are given 
by a spherical region around the point, with a support radius R proportional to a frac-
tion r2 of bounding box diagonal. In practice, we adjust a local polynomial surface to 
the selected neighborhood. CGAL1 library is used for curvature computation. An 
advantage of subdividing the point cloud in local regions is to avoid mutual impact 
between them. 

2.2. Keypoint Detectors 

The aim of this step is to pick out a repeatable and salient set of 3D points. Principal 
curvatures correspond to the eigenvalues of the Hessian matrix and are invariant un-
der rotation and translation. Hence, we propose to use local curvatures which can be 
calculated either directly from first and second derivatives, or indirectly as the rate of 
change of normal orientations in a local context region. The usual pair of Gaussian 
curvature K and mean curvature H only provides a poor representation, since the val-



 

ues are strongly correlated. Instead, we use them in composed form with curvature 
based quantities. In the following, we first introduce state-of-the-art detector methods 
based on shape index, HK and SC classification; then we present the principle of our 
new detector.  

Shape Index.  This detector type was proposed in [7], and uses the shape index (SIp) 
for feature point extraction. It is a quantitative measure of the surface shape at a point 
p, and is defined by (1), ��� =	12 −	1	 	× arctg ���� +	������ −	����					(1) 
where k1p and k2p are maximum and minimum principal curvatures, respectively and 
arctg = arctangent. With this definition, all shapes are mapped into the interval [0, 1] 
where every distinct surface shape corresponds to a unique value of SI (except for 
planar surfaces, which will be mapped to the value 0.5, together with saddle shapes). 
Larger shape index values represent convex surfaces and smaller shape index values 
represent concave surfaces. The main advantage of this measure is the invariance to 
orientation and scale. A point is marked as a feature point if its shape index SIp satis-
fies (2) within point neighbors, 

���� = ���(���) ; � ∈ � !"ℎ$%&'		��(		��� ≥	 (1 + *) × +%&��� = �!�(���) ; � ∈ � !"ℎ$%&'		��(		��� ≤	 (1 − -) × +(2) .	
where µ is the mean of shape index over the SI point neighbors values and  0 ≤ *, - ≤ 1. In above expression (2), parameter *	and 	- control the selection of feature 
points. We denote this detector by SID. 
 

HK and SC Classification.  The idea here is to build shape classification space using 
the pair mean-Gaussian curvatures (HK) or the pair shape index-curvedness (SC). 
Typically, for HK classification, we use the type function Tp used in LSP descriptor 
[7] that associates to each couple of H and K values a unique type value (4), 

T1	 = 1 + 331 + sgn
ε6	(7)8 + 31 − sgn

ε9 	(:)8 ; 	sgnε; 	(<) =+1							!>	< > 	ε@	,		0							!>	|<| ≤ 	ε@	,−1							!>	< < 	ε@
. 		(4)  

where εF and εG are two thresholds over the H and K. Nine region types are defined.  

In the shape index-curvedness (SC) space, S defines the shape type and C defines the 
degree of curvature and is the square-root of the deviation from flatness. Similarly to 
HK representation, the continuous graduation of S subdivides surface shapes into 9 
types. Planar surfaces are classified using the C value. We define a type function S1 
(5) that associates a unique type value to each couple of SI and C values (i.e values 
between 0.8125 and 0.9375 correspond to dome and  S1 = 7 ), 

														= S1 = 0	if	C	 ≤ 	 εMelse											S1 ∈ P1,8	R		; 		SI ∈ T0,1U	.. 																			(5)



 

For both classifications, salient regions are selected as those of one of the 5 following 
types: dome, trough, spherical, saddle rut and saddle ridge regions. More details are 
given in [9, 10].  

Combination of Criteria. Theoretically, the two classifications HK and SC should 
provide the same result; therefore we suggest combining the two criteria to increase 
reliability. In fact, our result will be validated with two measures of keypoints detec-
tion. After labeling points with a pair of value (X�, ��), points with salient type pair 
are selected, in other words, if the two labels correspond to the same of the 5 salient 
region types previously mentioned. Moreover, in this paradigm, plane surfaces aren’t 
taken in account. So, we chose to select, in addition to those 5 surface types, planar 
regions.  We note this detector « SC_HK ». Then, points with the same pair value are 
grouped using the connected component labeling. Connectivity is carried out by 
checking the 8-connectivity of each point. Finally, the centers of the connected com-
ponents are selected as keypoints. We also propose further combination by ranking 
the selected keypoints according to their curvedness value. The point with the maxi-
mum value of curvedness over the selected keypoints is chosen to represent each con-
nected component. In the case of planar regions, a big number of points are chosen 
and are not all really representative of the saliency. In order to have a good distribu-
tion of interest points in the object surface, the proposed idea here is to cluster prese-
lected points according to their relative distance and we threshold the distance be-
tween final keypoints (as a fraction of the bounding box’s diagonal). We call the de-
tector combining the two criteria  SC_HK_connex. 

2.1 Keypoint Descriptors 

After keypoints detection step, a 3D descriptor is computed around each selected 
interest point. In the case of range data, the dominant orientation at a point is the di-
rection of the surface normal at that point. Histogram-based methods are typically 
based on the feature point normals. For example, Local Surface Patches [7] computes 
histograms of normals and shape indexes of the points belonging to the keypoint sup-
port. The recently proposed SHOT descriptor achieves computational efficiency, de-
scriptive power and robustness by defining 3D repeatable local Reference Frame 
(RF). We briefly summarize here the structure of the SHOT descriptor. The reader is 
referred to [5] for details on the descriptor. The introduction of geometric information 
concerning the location of the points within the support is performed by first calculat-
ing a set of local histograms of normals over the 3D volumes defined by a 3D grid 
superimposed on the support and then grouping together all local histograms to form 
the final descriptor. The normal estimation is based on the Eigenvalue Decomposition 
of a novel scatter matrix defined by a weighted linear combination of neighbour point 
distances to the feature point, lying within the spherical support. The eigenvectors of 
this matrix define repeatable, orthogonal directions in presence of noise and clutter. 
Furthermore, the CSHOT descriptor [11] is proposed as an amelioration of the SHOT 
descriptor and makes profits from the 3D data enriched with texture.  The process of 
combination succeeds to form more robust and descriptive signature. 

Inspired by these state-of-the-art descriptors, we compute the histograms of shape 
index values and angle values between the reference surface normals at the feature 
point and the neighbour’s ones and join the two histograms similarly to the design of 
CSHOT descriptor. First of all, we accumulate point counts into bins according to a 



  

cosine function of the angle between the normal at each point within the correspond-
ing part of the grid and the normal at the feature point. For each of the local histo-
grams, a coarser binning is created for directions close to the reference normal direc-
tion and a finer one for orthogonal directions. In this way, small differences in or-
thogonal directions to the normal, which are the most informative ones, cause a point 
to be accumulated in different bins. Secondly, shape index values of the feature point 
and those of its neighbours relying in the spherical support are grouped into bins. 
Finally, we merge the shape index values and the cosine values into one descriptor 
that we call IndSHOT. We perform the same process as in the CSHOT to juxtapose 
the two histograms, where index shape histogram replaces the color histogram (shown 
in figure 1). In addition, the mean and standard deviation of shape index of the neigh-
bors around the feature point are computed. The final descriptors, composed of (mod-
el ID, index shape + cosines histograms, surface type, the 3D coordinates of keypoint, 
mean and standard deviation of shape index), are saved to be used in the matching 
process.  

 

Fig. 1. IndSHOT representation 

2.2 Matching and Recognition  

We validate the proposed detector and descriptor using a view matching approach. 
Here, we focus on solving the surface matching problem based on local features, by 
point-to-point correspondences obtained by matching local invariant descriptors of 
feature points. Given a test object, we compute a measure of similarity between de-
scriptors extracted on the test view and those of the models in database. The infor-
mation (model ID, histogram, surface type, the centroïd, mean and standard deviation 
of SI) are used for matching process. Hence, for each histogram from test view, we 
find the best matching histogram from database view using the Euclidian distance. To 
speed up the comparison process, we use a KD-tree structure. Two keypoints are 
matched according to their histogram distance and their types of surface. For a test 
object, a set of nearest neighbors is returned after histogram matching. In the case of 
multiple correspondences, the potential corresponding pairs are filtered based on the 
geometric constraint: Euclidean distance between features coordinates of the two 
matched surface patches. The closest couple of features in term of coordinates dis-
tance is the more likely to form a consistent correspondence. A system of incremental 
votes for each class gives the final matched class. 
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3 Experimental results 

3.1. Data and Parameters 

We performed our experiments on two real range data sets. The first one is our own 
dataset (Lab-Dataset) captured with the Kinect sensor and composed of 20 objects 
(Ex. prism, ball, fan, trash can, etc) with 3 to 10 different angle views per object (fig-
ure 3). The second data set is the public RGB-D Object Dataset2  (figure 2). There are 
51 common household object categories. In our experimentation, we use 46 objects 
with 25 views per object for only one object per category, which constitute a dataset 
of 1150 views. The list of the following objects are labelled from 1 to 46 respectively: 
apple_1, ball_1, banana_1, bell_peper_1, binder_1, calculator_1, camera_1, cap_1, 
cell_phone_1, cereal_box_3, coffee_mug_1, comb_1, flashlight_1, food_bag_1, food_box_1, 
food_can_1, food_cup_1, garlic_1, greens_1, hand_towel_1, instant_noodles_1, keyboard_1, 
Kleenex_1, lemon_1, lightbulb_1, lime_1, marker_1, mushroom_1, notebook_1, onion_1, 
orange_1, peach_1, pear_1, pitcher_1, plate_1, potato_1, rubber_eraser_1, scissors_1, sham-
poo_1, soda_can_1, sponge_1, stapler_1, tomato_1, toothbrush_1 and watter_bottle_1. The 
numbers of feature points detected from these range images vary from 4 to 250, de-
pending on the viewpoint and the complexity of input shape. In our experimentations, 
we have tried several values of our parameters and here we give the values achieving 
the best performance: r1= 2, r2 = 0.04, span = 5, Y =0.05, -= 0.05, εZ = 0.009, ε\ =0.0001	, εM = 0.01. 

 
Fig. 2. Examples of objects from the RGB-D Object Dataset2  
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Fig. 3. The 20 objects of the lab-Dataset 
 

3.2. Keypoint Stability 

To evaluate detector performance, we illustrate a visual comparison of keypoint posi-
tions detected with SC_HK, SC_HK_connex, and SID detectors as shown on figure 4. It 
reveals that the final selected points are quite well localized. The combining process 
allows a better feature point filtering than SC or HK alone, as false detected points in 
both are eliminated, and points with correct surface type remain. Figure 5 illustrates 
the relative stability of keypoint’s positions detected with SC_HK_connex detector 



 

  

when varying viewpoints for the same object. Clearly, we recover almost same 
keypoint positions in the different views. For a quantitative analysis showing the su-
perior repeatability of our keypoints, we refer the reader to our previous publication 
[12]. 

     
 

Fig. 4.  Detected keypoints on trash can, fan  and storage cupboard models with:  SID in first 
column, SC_HK in second column and SC_HK_connex in third column. 

 
Fig.5.   Detected keypoint on fan model with SC_HK_connex, in view angle variation 

3.3. Matching Result 

The test protocol for object recognition from different angle views is the following: 
for the RGBD dataset, we select one test view from the N total number of views in the 
dataset, and the N-1 views are used as the training set; this process is repeated for the 
N views of the whole database. For the Lab-Dataset, we select one to four random 
views per object as the query and use the remaining views for training. We carry out 
three experiments using the three descriptors SHOT, CSHOT and IndSHOT. The 
same evaluation is done for the two detectors SID and SC_HK_connex. The overall 
recognition rates, which correspond to the mean recognition rate over the objects, are 
given in table 1 for respectively our Lab-Dataset and the RGBD dataset. In figure 6, 
the cross recognition rates between models are displayed in the confusion matrix. 
Gray level determines the rate of the recognition. Black is for high and white is for 
low recognition rate. The overall recognition rate is quite promising for our 
SC_HK_connex method in comparison to the SID results, with 91.12% on the RGBD 
dataset. This rate is achieved using the new proposed descriptor IndSHOT, which 
suggests that it is more descriptive than the CSHOT and SHOT versions. The recogni-
tion rate in the Lab-Dataset is about 82%. The reason behind this lower result is the 
high similarity between object shapes included in this dataset (two boots objects, 
parallelepipedic shapes, cylindrical shapes, etc). In another hand, the recognition rate 
varies according to the view angle chosen for the query. In fact, higher rates are 
achieved when the query‘s view angle is given between two view angles in the train-
ing base. 



 

Fig. 6.   Confusion matrix
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Table1: Recognition rates for our Lab
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4. Conclusions and Perspectives 
We have presented two main complementary contributions: 1/ an original 3D 
keypoint detector, SC_HK_connex, based on the idea of combining criteria; 2/ a new 
3D keypoint descriptor, IndSHOT, based solely on shape characteristics.  

The proposed detector combines SC (shape curvedness) and HK criteria with the 
principle of connected components. It was already shown in our previous work that 
the selected 3D keypoints are more repeatable than for alternative detectors, and this 
is confirmed here by the good inter-view matching reached in our experiments. The 
proposed IndSHOT descriptor encodes the occurrence frequency of shape index val-
ues vs. the cosine of the angle between the normal of reference feature point and that 
of its neighbours. It seems to be significantly more descriptive than original SHOT 
and CSHOT from which we have crafted it. 

Finally, our new combination of SC_HK_connex detector + IndSHOT descriptor is 
evaluated in challenging 3D object recognition scenarios characterized by the pres-
ence of viewpoint variations and a few number of views on real-world depth data. The 
outcome is very promising results, with 92% correct recognition on 46 objects from a 
public dataset, and 82% on our own Lab-Dataset containing 20 “everyday” objects, 
some of which are rather similar one to another.  

For the moment, measures of curvatures in our process are calculated at a constant 
scale level, so the feature’s scale is still ambiguous. To overcome this fact, we plan, as 
a future work, to search for features at different scale levels.  
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