

Apprentissage Artificiel (Statistical Machine-Learning)

General framework + Supervised Learning

Pr. Fabien MOUTARDE Center for Robotics MINES ParisTech PSL Université Paris

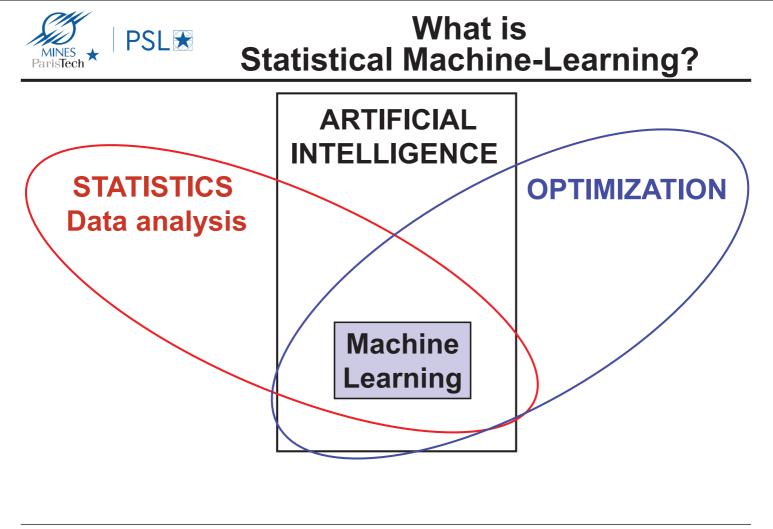
Fabien.Moutarde@mines-paristech.fr http://people.mines-paristech.fr/fabien.moutarde

Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 1

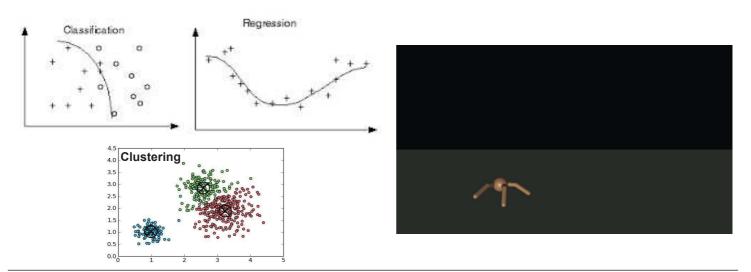
PSL 🛣

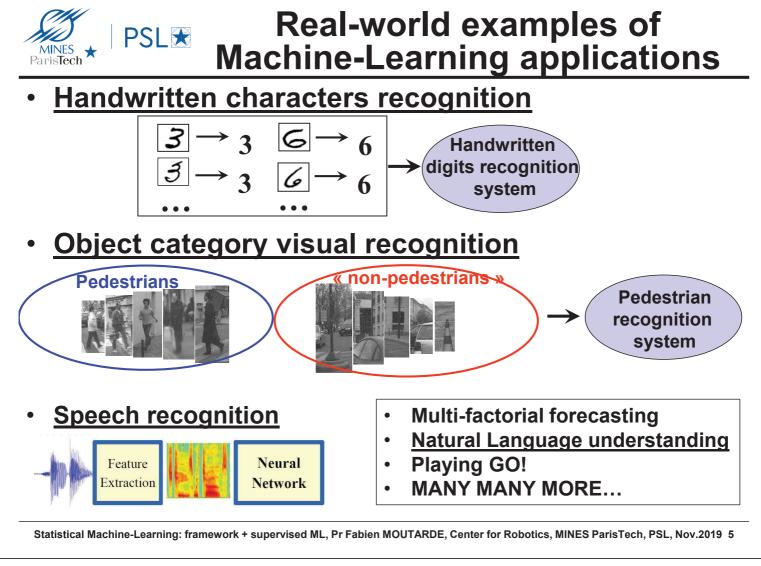
Outline

- Intro: What is Statistical Machine-Learning?
- Typology of Machine-Learning
- General formalism for SUPERVISED Learning
- Evaluating learnt models: metrics for CLASSIFICATION
- Generalization vs. overfitting

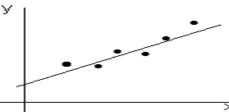


- One of many sub-fields of <u>Artificial Intelligence</u>
- Application of *optimization methods* to statistical modelling
- <u>Data-driven *mathematical* modelling</u>, for automated *classification*, *regression*, *partitioning/clustering*, or *decision/behavior rule*

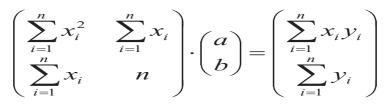




PSL

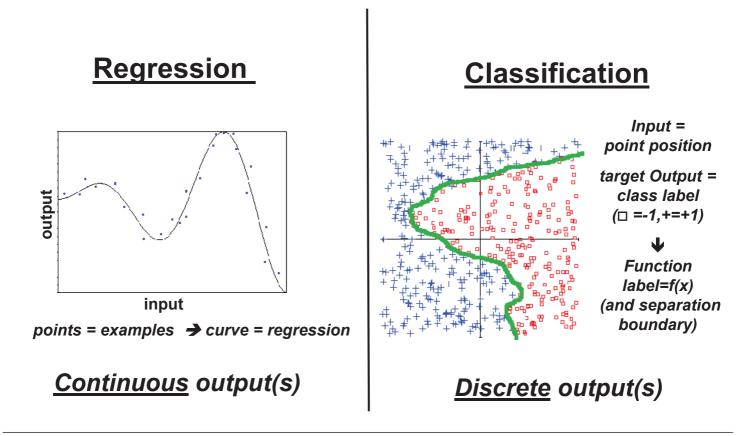


- Model: (straight) line y=ax+b (2 parameters a and b)
- Data: n points with target value $(x_i, y_i) \in \Re^2$
- Cost function: sum of squares of deviation from line
 κ=Σ_i (y_i-a.x_i-b)²
- Algorithm: direct (or iterative) solving of linear system



[Question: Where does this equation come from?]

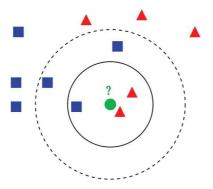
PSL Regression vs. classification



Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 7

PSL★

Simplest *classification* method: Nearest Neighbors algorithm



Principle of Nearest Neighbors (kNN) for classification

[What are the main drawbacks of this method??]

- Intro: What is Statistical Machine-Learning?
- Typology of Machine-Learning
- General formalism for SUPERVISED Learning
- Evaluating learnt models: metrics for CLASSIFICATION
- Generalization vs. overfitting

PSL Supervised vs Unsupervised learning

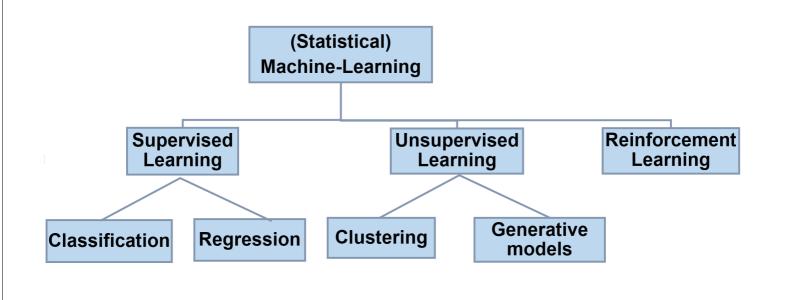
Learning is called "<u>supervised</u>" when <u>there are "target"</u> <u>values</u> for every example in training dataset:

examples = (input-output) = $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

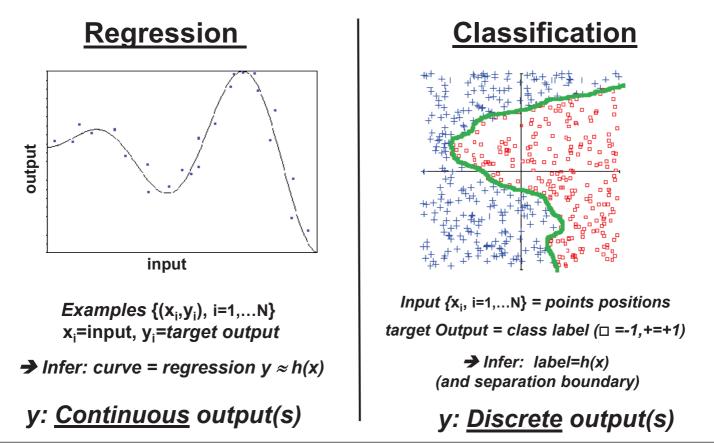
The goal is to build a (generally non-linear) approximate model for interpolation, in order to be able to GENERALIZE to input values other than those in training set

"<u>Unsupervised</u>" = when there are <u>NO target values</u>: dataset = $\{x_1, x_2, ..., x_n\}$

The goal is typically either to do datamining (unveil structure in the distribution of examples in input space), or to find an output maximizing a given evaluation function



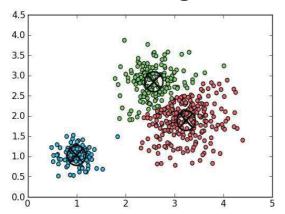
SUPERVISED LEARNING: regression or classification



UNSUPERVISED LEARNING: Clustering vs. Generative model

Clustering

PSL

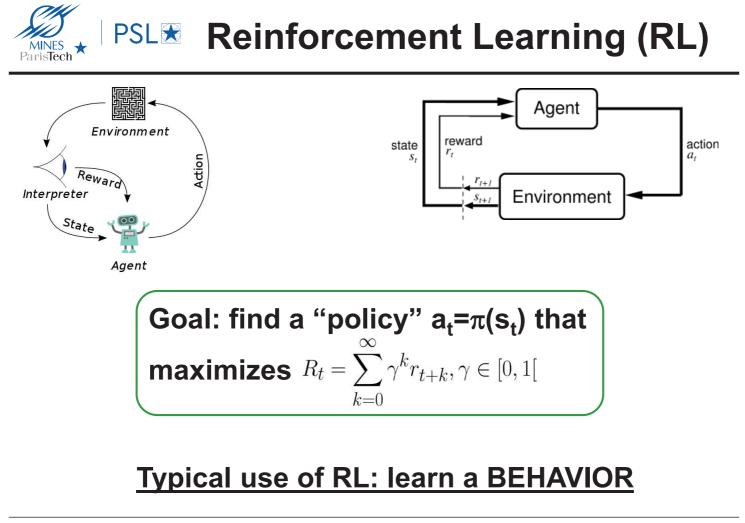


Points = examples → partitioning in "groups" (colors) based on similarity

Generative model

From examples *x_n*, estimate the *PROBABILITY DISTRIBUTION p(x)*

→ Can GENERATE new examples SIMILAR to those in training set



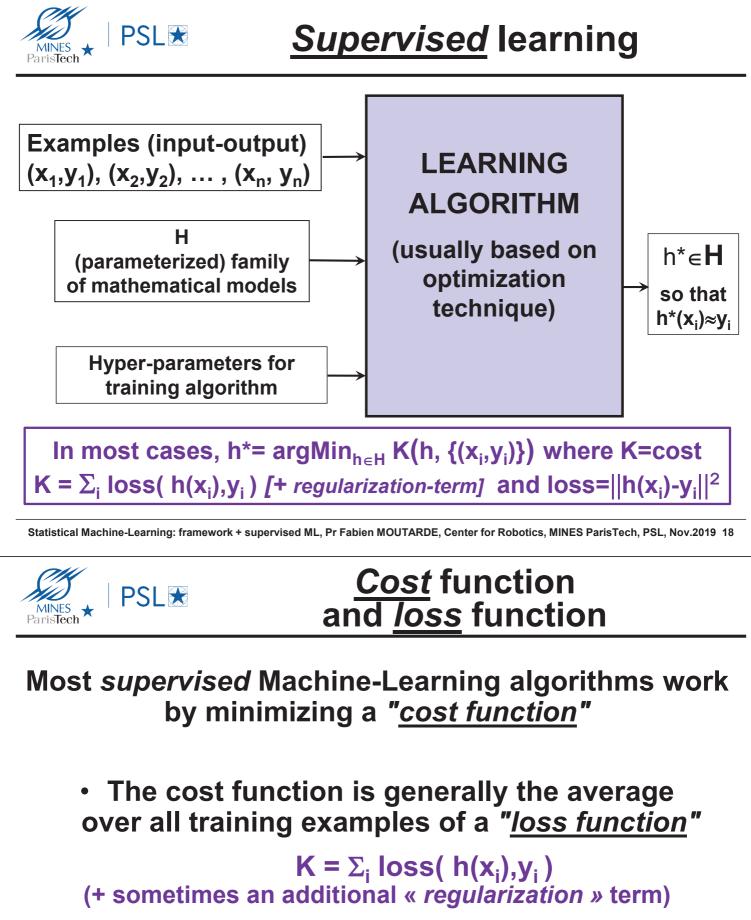
- Intro: What is Statistical Machine-Learning?
- Typology of Machine-Learning
- General formalism for SUPERVISED Learning
- Evaluating learnt models: metrics for CLASSIFICATION
- Generalization vs. overfitting

Many different supervised ML approaches & algorithms

Linear regressions

PSL 🖈

- <u>Decision trees (ID3 or CART algorithms)</u>
- Bayesian (probabilistic) methods
- ..
- <u>Multi-layer neural networks</u> trained with gradient backpropagation
- Support Vector Machines
- <u>Boosting</u> of "weak" classifiers
- <u>Random forests</u>
- <u>Deep Learning</u> (Convolutional Neural Networks,...)
- •



 The loss function is usually some measure of the difference between target value and prediction by the output of the learnt model PSL Linear Multivariate Regression

Linear Regression, Mean Square Loss:

PSL 🛠

decision rule: y = W'X
loss function: L(W, yⁱ, Xⁱ) = ¹/₂(yⁱ - W'Xⁱ)²
gradient of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(y^i - W(t)'X^i)X^i$ update rule: W(t + 1) = W(t) + $\eta(t)(y^i - W(t)'X^i)X^i$ direct solution: solve linear system $[\sum_{i=1}^{P} X^i X^i']W = \sum_{i=1}^{P} y^i X^i$

[From slide by Y. LeCun: Machine Learning and Pattern Recognition]

Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 20

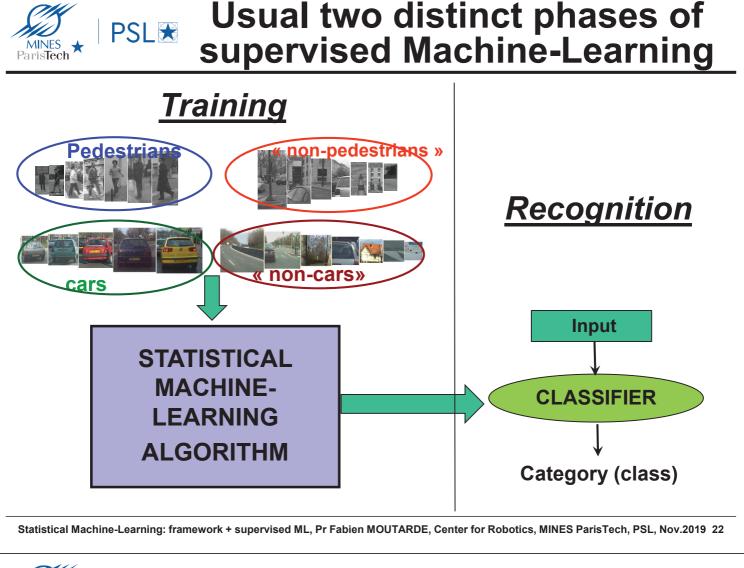
Logistic Multivariate Regression

If target output is binary (classification)

Logistic Regression, Negative Log-Likelihood Loss function:

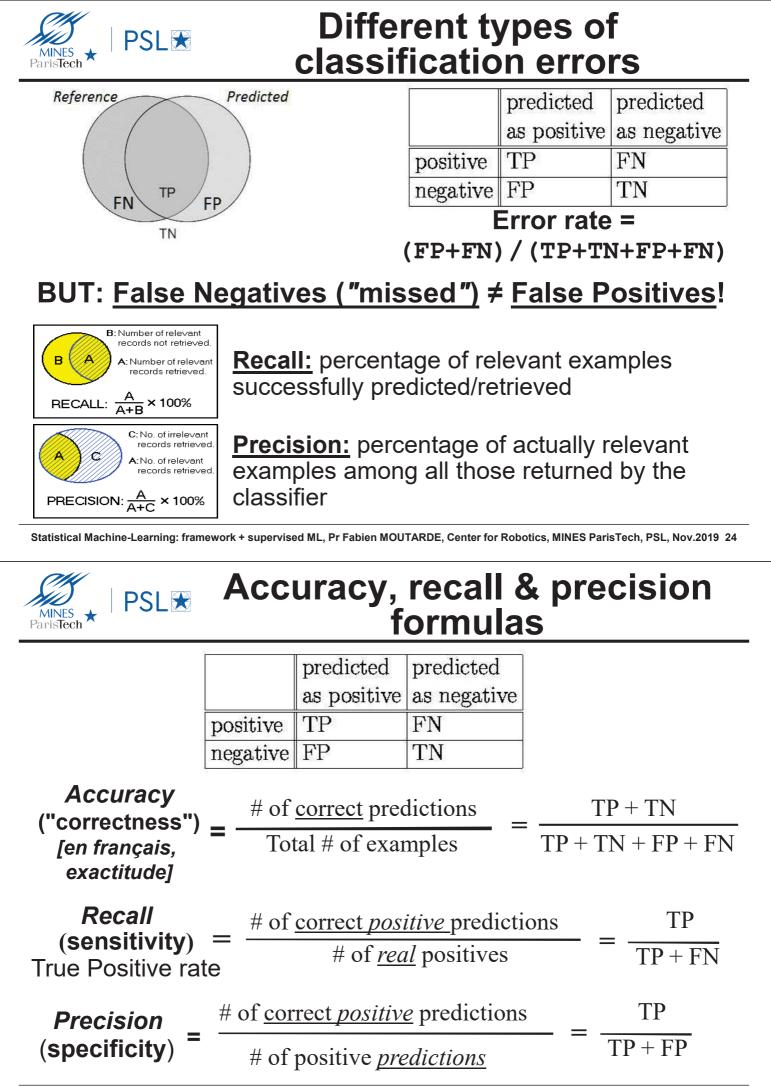
- decision rule: y = F(W'X), with $F(a) = \tanh(a) = \frac{1 \exp(a)}{1 + \exp(a)}$ (sigmoid function).
- loss function: $L(W, y^i, X^i) = 2\log(1 + \exp(-y^i W' X^i))$
- **gradient** of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(Y^i F(W'X)))X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i F(W(t)'X^i))X^i$

[From slide by Y. LeCun: Machine Learning and Pattern Recognition]



Outline

- Intro: What is Statistical Machine-Learning?
- Typology of Machine-Learning
- General formalism for SUPERVISED Learning
- Evaluating learnt models: metrics for CLASSIFICATION
- Generalization vs. overfitting

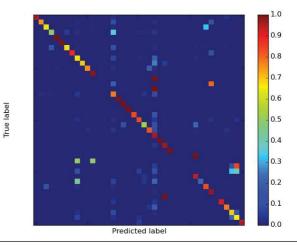


Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 25

Classification performance metrics

- <u>Accuracy</u> = proportion of correct
- <u>Recall (sensitivity)</u> ≈ proportion of "not missed" ≈ "completeness" level [exhaustivité]
- Precision (specificity) ≈ reliability of predicted labels
- <u>Confusion matrix</u>: predicted label v.s. true label

					True (False positive	
					True negative		False negative	
C.Matrix	1	2	3	4	5	6	ACTUAL	RECALL
1	339	15	5	0	0	0	359	94.43%
2	15	305	14	0	0	0	334	91.32%
3	6	10	242	0	0	0	258	93.80%
4	0	0	0	302	30	0	332	90.96%
5	0	0	0	15	368	0	383	96.08%
6	0	0	0	0	0	394	394	100.00%
PREDICTED	360	330	261	317	398	394	2060	94.43%
PRECISION	94.17%	92.42%	92.72%	95.27%	92.46%	100.00%	94.51%	94.66%



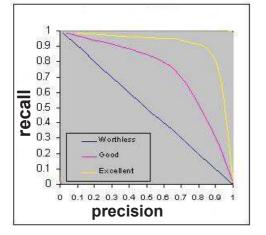
Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 26

Precision-recall trade-off and curve

Classifier C1 predicts better than C2

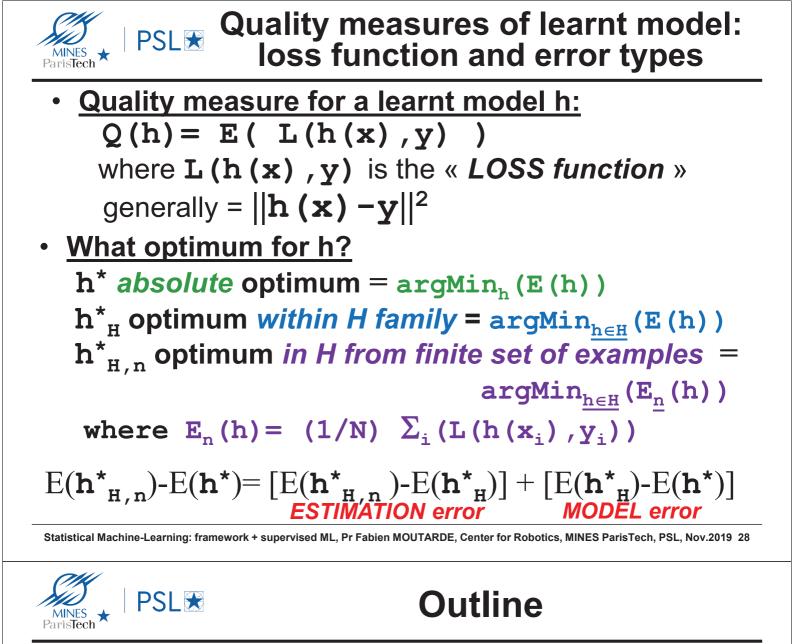
iff C1 has better recall and precision

+ Trade-off between recall and precision



Compare precision-recall <u>curves!</u>

For numeric comparison (or if curves cross each other), <u>Area Under Curve (AUC)</u>



- Intro: What is Statistical Machine-Learning?
- Typology of Machine-Learning
- General formalism for SUPERVISED Learning
- Evaluating learnt models: metrics for CLASSIFICATION
- Generalization vs. overfitting

Formal definition of SUPERVISED LEARNING

"LEARNING = APPROXIMATE <u>+ GENERALIZE</u>"

Given a <u>FINITE</u> set of examples (x₁, y₁), (x₂, y₂),..., (x_n, y_n)
where x_i∈ℜ^d = input vectors, and y_i∈ℜ^s = target values
(given by the "teacher"), find a function h which
"<u>approximates AND GENERALIZES as best as possible</u>"
the underlying function such that y_i = f(x_i) + noise

⇒ goal = to minimize the GENERALIZATION error

$$\mathbf{E}_{gen} = \int \|\mathbf{h}(\mathbf{x}) - \mathbf{f}(\mathbf{x})\|^2 \mathbf{p}(\mathbf{x}) d\mathbf{x}$$

(where p(x) = probability distribution of x)

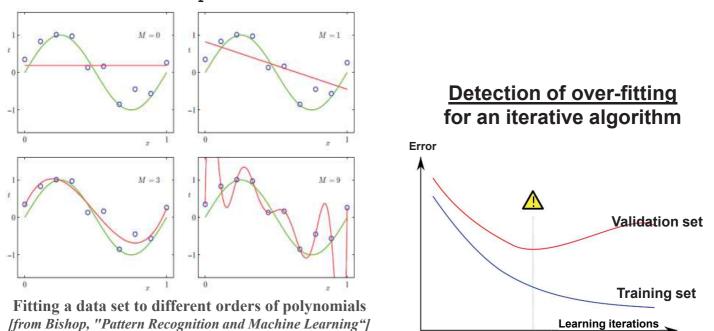
Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 30

PSL 🖈

About over-fitting

The generalization error cannot be directly measured, only <u>empirical error</u> on examples can be estimated:

$$\mathbf{E}_{\text{emp}} = \left(\sum_{i} \|\mathbf{h}(\mathbf{x}_{i}) - \mathbf{y}_{i}\|^{2} \right) / \mathbf{n}$$



To avoid over-fitting and maximize generalization, absolutely <u>essential to use some VALIDATION</u> <u>estimation</u>, for optimizing training hyper-parameters (and stopping criterion):

- either use a separate validation dataset (random split of data into Training-set + Validation-set)
- or use CROSS-VALIDATION:
 - Repeat k times: train on (k-1)/k proportion of data + estimate error on remaining 1/k portion
 - Average the k error estimations

3-fold cross-validation:

- Train on S1 \cup S2 then estimate errS3 error on S3
- Train on S1 \cup S3 then estimate errS2 error on S2
- Train on S2US3 then estimate errS1 error on S1
- Average validation error: (errS1+errS2+errS3)/3

Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 32

Empirical error and VC-dimension

 In practice, the only error that can be estimated and minimized is the <u>empirical</u> error computed on a finite set of examples:

 $\mathbf{E}_{emp} = (\Sigma_{i} ||h(\mathbf{x}_{i}) - \mathbf{y}_{i}||^{2}) / n$

 According to « regularization theory » and theoretical result by Vapnik, minimizing E_{emp}(h) within heH shall also minimize E_{gen} <u>if H has a</u> <u>finite VC-dimension</u>

VC-dimension : *maximum* cardinal v so that for any set S of v points, all dichotomies of S can be performed by one h \in H (VC-dim \approx complexity of H)

[VC-dimension {hyperplanes of \mathbb{R}^n }?]

Regularization by adding penalty to the cost function

Vapnik has shown that:

 $\begin{array}{l} \mbox{Proba}(max_{h\in H} \; | E_{gen}(h) - E_{emp}(h) | \geq \epsilon) < G(n, \delta, \epsilon) \\ \mbox{where n = $\#$ of examples and δ=VC-dim and G decreases with δ/n} \\ \Rightarrow to be sure that E_{gen} en decreases when minimizing E_{emp}, the smaller n is, the smaller the VC-dim δ needs to be} \end{array}$

A possible way to automatically reduce VC-dim is to modify the cost function into: $C=E_{emp}+\Omega(h)$ where $\Omega(h)$ penalizes « complexity » of h (\Rightarrow reduction of « effective » VC-dim)

NB: ≈ application of "<u>Occam's razor</u>" !! (≈ "why do complicated if it can be done simpler?")

Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 34

Usual form of regularization penalty: L₁ norm

In many cases, the complexity (in VC-dim sense) increases with maximum value of its parameters w_i → interesting to penalize large values of w_i

Usually done by modifying cost function into C = E_{emp} + $\lambda \Sigma_i$ (||w_i||)

Example: LASSO = regularized linear regression $Min_w(\Sigma_j||y_j-w.x_j)||_2^2 + \lambda ||w||_1$) [L₁-norm penalization of regressor]

NB: if using L_0 (# of NON-ZERO components) penalization (instead of L_1), we can obtain <u>SPARSE model</u>

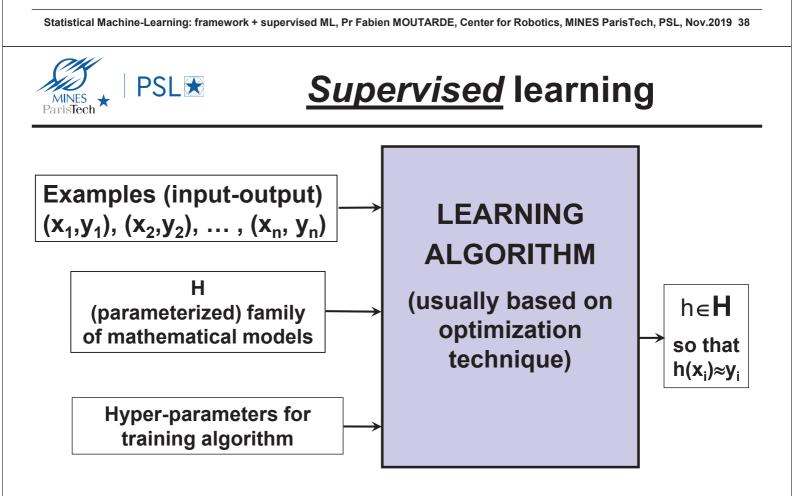
Data augmentation (for classification)

In the case of CLASSIFICATION, over-fitting avoidance and better generalization can also be favored by DATA AUGMENTATION:

for each labelled example in training set, generate several slightly *distorted* variants which shall have the same label

Particularly important (and easy) for image inputs or time-series inputs

Synthesis on various algorithms for SUPERVISED Machine-Learning



PSLX Summary of main shallow SUPERVISED learning algorithms

- <u>Decision trees</u>: naturally adapted to <u>symbolic inputs</u>, very fast, good scaling for very high number of classes, <u>"white" box</u>; BUT noise sensitive
- <u>Multi-layer neural networks:</u> universal approximators, good generalization, easy handling of multi-class; BUT optimum model NOT guaranteed, <u>many critical hyper-parameters</u> (# hidden neurons, weight init., learning rate, # training epochs,...)
- Support Vector Machines: <u>maths-guaranteed optimal separation</u>, possible handling of structured input (graphs, etc...) via kernel; BUT <u>not very efficient for multi-class</u> (K times 1-vs-all SVMs, or at least log(K) times Ci-vs-Cj), training computation rises quickly with input dim and # of examples O(max (N,D) * min (N,D)^2)
- <u>Boosting</u> of « weak » classifiers: simple algo, can build strong classifier from any weak classifier, can select features during training; BUT <u>not very efficient for multi-class</u> (n times 1-vs-all)
- <u>Random forests</u>: OK for symbolic input, robustness to noise, very fast to compute, efficient for large # of classes and high input dim; BUT training sometimes long

Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019 41

PSL 🛠

Model type choice criteria for SUPERVISED learning

					0	
	MLP Neural Network	ConvNets	SVM	Boosting	Decision Tree	Random Forest
Many classes	+	+				++
High dimension of input			-		+	++
Many examples		REQUIRED (except if transfer- learning)	-			
Interpretability (« white » box)	-				YES	
Data OTHER than vectors of values		Only "grid" data	Structured (string, graph)		symbolic	symbolic
Robustness to noise and erroneous labels	+	+	++			++
Ease/speed of training	-		+		++	+
Handling of features		Learn them		Automated selection		
Execution time		-			+++	+

PSLX Some REFERENCE TEXTBOOKS on Statistical Machine-Learning

• Introduction au machine learning C. Azencott, Dunod (2018).

https://www.dunod.com/sciences-techniques/introduction-au-machine-learning-0

- <u>The Elements of Statistical Learning</u> (2nd edition)
 T. Hastier, R. Tibshirani & J. Friedman, Springer, 2009. http://statweb.stanford.edu/~tibs/ElemStatLearn/
- <u>Deep Learning</u>

 I. Goodfellow, Y. Bengio & A. Courville, MIT press, 2016.
 http://www.deeplearningbook.org/
- <u>Pattern recognition and Machine-Learning</u> C. M. Bishop, Springer, 2006.
- Introduction to Data Mining P.N. Tan, M. Steinbach & V. Kumar, AddisonWeasley, 2006.
- <u>Apprentissage artificiel : concepts et algorithmes</u> A. Cornuéjols, L. Miclet & Y. Kodratoff, Eyrolles, 2002.