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Outline

• Intro: What is Statistical Machine-Learning?

• Typology of Machine-Learning

• General formalism for SUPERVISED Learning

• Evaluating learnt models: 

metrics for CLASSIFICATION

• Generalization vs. overfitting
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What is 
Statistical Machine-Learning?

STATISTICS 

Data analysis
OPTIMIZATION

ARTIFICIAL

INTELLIGENCE 

Machine

Learning
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Statistical Machine-Learning

• One of many sub-fields of Artificial Intelligence

• Application of optimization methods to statistical modelling

• Data-driven mathematical modelling, for automated 

classification, regression, partitioning/clustering, or 

decision/behavior rule 

Clustering
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• Handwritten characters recognition

• Object category visual recognition

• Speech recognition

Real-world examples of 
Machine-Learning applications 

3

3

6

6
… …

Handwritten 

digits recognition 

system

Pedestrians « non-pedestrians »
Pedestrian

recognition 

system

• Multi-factorial forecasting

• Natural Language understanding

• Playing GO!

• MANY MANY MORE…
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One of simplest ML algorithm: 
Least Squares Linear Regression

• Model: (straight) line y=ax+b (2 parameters a and b)

• Data: n points with target value (xi,yi)ÎÂ
2

• Cost function: sum of squares of deviation from line   

K=Si(yi-a.xi-b)
2

• Algorithm: direct (or iterative) solving of linear system 
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[Question: Where does this equation come from?]
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Regression vs. classification

input

o
u

tp
u

t

points = examples  è curve = regression

Input = 

point position

target Output = 

class label 

(¨ =-1,+=+1)

ê

Function 

label=f(x)

(and separation 

boundary)

Regression Classification

Continuous output(s) Discrete output(s)
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Simplest classification method: 
Nearest Neighbors algorithm

Principle of Nearest Neighbors (kNN) for classification

[What are the main drawbacks of this method??]
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Supervised vs Unsupervised 
learning

Learning is called "supervised" when there are "target"
values for every example in training dataset:

examples = (input-output) = (x1,y1),(x2,y2),…,(xn,yn)

The goal is to build a (generally non-linear) approximate
model for interpolation, in order to be able to GENERALIZE
to input values other than those in training set

"Unsupervised" = when there are NO target values:
dataset = {x1, x2, … , xn}

The goal is typically either to do datamining (unveil
structure in the distribution of examples in input space), or
to find an output maximizing a given evaluation function
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Machine-Learning TYPOLOGY
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SUPERVISED LEARNING:
regression or classification

input

o
u

tp
u

t

Examples {(xi,yi), i=1,…N} 

xi=input, yi=target output

è Infer: curve = regression y » h(x)

Input {xi, i=1,…N} = points positions

target Output = class label (¨ =-1,+=+1)

è Infer: label=h(x)

(and separation boundary)

Regression Classification

y: Continuous output(s) y: Discrete output(s)
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UNSUPERVISED LEARNING:
Clustering vs. Generative model

Clustering

Points = examples 

è partitioning in “groups” (colors) 

based on similarity

Generative model

From examples xn, estimate the 

PROBABILITY DISTRIBUTION p(x)

è Can GENERATE new examples 

SIMILAR to those in training set 
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Reinforcement Learning (RL)

Goal: find a “policy” at=p(st) that

maximizes  

Typical use of RL: learn a BEHAVIOR



Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019  16

Outline

• Intro: What is Statistical Machine-Learning?

• Typology of Machine-Learning

• General formalism for SUPERVISED Learning

• Evaluating learnt models: 

metrics for CLASSIFICATION

• Generalization vs. overfitting

Statistical Machine-Learning: framework + supervised ML, Pr Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Nov.2019  17

Many different supervised ML 
approaches & algorithms

• Linear regressions

• Decision trees (ID3 or CART algorithms)

• Bayesian (probabilistic) methods

• …

• Multi-layer neural networks trained with gradient 
backpropagation

• Support Vector Machines

• Boosting of "weak" classifiers

• Random forests

• Deep Learning (Convolutional Neural Networks,…)

• …
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Supervised learning

Examples (input-output)

(x1,y1), (x2,y2), … , (xn, yn)

H 

(parameterized) family 

of mathematical models

Hyper-parameters for

training algorithm

LEARNING

ALGORITHM

(usually based on 

optimization 

technique)

h*ÎH

so that 

h*(xi)»yi

In most cases, h*= argMinhÎH K(h, {(xi,yi)}) where K=cost    

K = Si loss( h(xi),yi ) [+ regularization-term] and loss=||h(xi)-yi||
2 
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Cost function 
and loss function

Most supervised Machine-Learning algorithms work 
by minimizing a "cost function"

• The cost function is generally the average 
over all training examples of a "loss function"

K = Si loss( h(xi),yi )
(+ sometimes an additional « regularization » term)

• The loss function is usually some measure of the 
difference between target value and prediction by 
the output of the learnt model
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Linear Multivariate Regression

[From slide by ]
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Logistic
Multivariate Regression

[From slide by ]

If target output is binary (classification)
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Usual two distinct phases of
supervised Machine-Learning

Pedestrians « non-pedestrians »

cars « non-cars»

STATISTICAL

MACHINE-

LEARNING

ALGORITHM

CLASSIFIER

Input

Category (class)

Recognition

Training
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Different types of 
classification errors

BUT: False Negatives ("missed") ≠ False Positives!

Recall: percentage of relevant examples 
successfully predicted/retrieved 

Precision: percentage of actually relevant 
examples among all those returned by the 
classifier 

Error rate = 
(FP+FN)/(TP+TN+FP+FN)
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Accuracy, recall & precision 
formulas

# of correct positive predictions

# of real positives
=

TP

TP + FN
(sensitivity)   =

True Positive rate 

Recall

Precision # of correct positive predictions

# of positive predictions
=

TP

TP + FP=
(specificity)

# of correct predictions

Total # of examples
=

TP + TN

TP + TN + FP + FN

Accuracy
("correctness")

[en français, 

exactitude]

=
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Classification performance 
metrics

• Accuracy = proportion of correct

• Recall (sensitivity) » proportion of ”not missed” 
» ”completeness” level [exhaustivité]

• Precision (specificity) » reliability of predicted labels

• Confusion matrix: predicted label v.s. true label
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Precision-recall 
trade-off and curve

re
c
a
ll

precision

For numeric comparison (or if curves cross each other),

Area Under Curve (AUC)

Classifier C1 predicts better than C2 

iff C1 has better recall and precision 

+ Trade-off between recall and precision

è Compare precision-recall

curves!
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Quality measures of learnt model:
loss function and error types

• Quality measure for a learnt model h:
Q(h)= E( L(h(x),y) )
where L(h(x),y) is the « LOSS function »

generally = ||h(x)-y||2

• What optimum for h?  

h* absolute optimum = argMinh(E(h))
h*H optimum within H family = argMinhÎH(E(h))

h*H,n optimum in H from finite set of examples  =
argMinhÎH(En(h))

where En(h)= (1/N) Si(L(h(xi),yi))

ESTIMATION error MODEL error
E(h*H,n)-E(h*)= [E(h*H,n )-E(h*H)] + [E(h*H)-E(h*)]
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Formal definition of
SUPERVISED LEARNING

”LEARNING = APPROXIMATE + GENERALIZE”

Given a FINITE set of examples (x1,y1),(x2,y2),…,(xn,yn)

where xiÎÂ
d = input vectors, and yiÎÂ

s = target values 

(given by the ”teacher”), find a function h which

"approximates AND GENERALIZES as best as possible" 

the underlying function such that yi = f(xi) + noise

Þ goal = to minimize the GENERALIZATION error

Egen= ò ║h(x)-f(x)║2 p(x)dx

(where p(x) = probability distribution of x)
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About over-fitting

Fitting a data set to different orders of polynomials 
[from Bishop, "Pattern Recognition and Machine Learning“] Learning iterationsLearning iterations

Detection of over-fitting

for an iterative algorithm

Training set

Validation set

Error

The generalization error cannot be directly measured,  

only empirical error on examples can be estimated: 

Eemp = ( Si ||h(xi)-yi||
2 )/n
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Machine-Learning methodology: 
importance of validation set

To avoid over-fitting and maximize generalization,
absolutely essential to use some VALIDATION
estimation, for optimizing training hyper-parameters
(and stopping criterion):

– either use a separate validation dataset (random split 
of data into Training-set + Validation-set)

– or use CROSS-VALIDATION:
• Repeat k times: train on (k-1)/k proportion of data + 

estimate error on remaining 1/k portion

• Average the k error estimations

S3

S2

S1

3-fold cross-validation:
• Train on S1ÈS2 then estimate errS3 error on S3

• Train on S1ÈS3 then estimate errS2 error on S2

• Train on S2ÈS3 then estimate errS1 error on S1

• Average validation error: (errS1+errS2+errS3)/3
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Empirical error 
and VC-dimension

• In practice, the only error that can be estimated 
and minimized is the empirical error computed 
on a finite set of examples:

Eemp = ( Si ||h(xi)-yi||
2 )/n

• According to « regularization theory » and 
theoretical result by Vapnik,  minimizing  Eemp(h) 
within heH shall also minimize Egen if H has a 
finite VC-dimension

[VC-dimension {hyperplanes of !"} ?] 

VC-dimension : maximum cardinal v so that for 

any set S of v points, all dichotomies of S can be 

performed by one hÎH (VC-dim » complexity of H)
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Regularization by adding 
penalty to the cost function

Vapnik has shown that: 

Proba(maxhÎH |Egen(h)–Eemp(h)| ³ e) < G(n,d,e) 
where n = # of examples and d=VC-dim and G decreases with d/n

Þ to be sure that Egen en decreases when minimizing Eemp , 

the smaller n is, the smaller the VC-dim d needs to be

A possible way to automatically reduce VC-dim is to  

modify the cost function into: C=Eemp+ W(h)

where W(h) penalizes « complexity » of h

(Þ reduction of « effective » VC-dim)

NB: » application of ”Occam’s razor” !!

(» ”why do complicated if it can be done simpler?”)
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Usual form of 
regularization penalty: L1 norm 

In many cases, the complexity (in VC-dim sense) 
increases with maximum value of its parameters wi

è interesting to penalize large values of wi

Usually done by modifying cost function into 

C = Eemp+ l Si (||wi||)

Example: LASSO = regularized linear regression

Minw( Sj||yj-w.xj )||
2

2 + l ||w||1 )
[L1-norm penalization of regressor]

NB: if using L0 (# of NON-ZERO componants) penalization 

(instead of L1), we can obtain SPARSE model
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Data augmentation 
(for classification)

In the case of CLASSIFICATION, over-fitting 
avoidance and better generalization can also be 
favored by DATA AUGMENTATION:

for each labelled example in training set, 
generate several slightly distorted variants 
which shall have the same label

Particularly important (and easy) for image inputs or 
time-series inputs
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Synthesis on various algorithms for

SUPERVISED Machine-Learning
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Supervised learning

Examples (input-output)

(x1,y1), (x2,y2), … , (xn, yn)

H 

(parameterized) family 

of mathematical models

Hyper-parameters for

training algorithm

LEARNING

ALGORITHM

(usually based on 

optimization 

technique)

hÎH

so that 

h(xi)»yi
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Summary of main shallow
SUPERVISED learning algorithms

• Decision trees: naturally adapted to symbolic inputs, very fast, 
good scaling for very high number of classes, "white" box; 
BUT noise sensitive

• Multi-layer neural networks: universal approximators, 
good generalization, easy handling of multi-class; 
BUT optimum model NOT guaranteed, many critical hyper-parameters 
(# hidden neurons, weight init., learning rate, # training epochs,…)

• Support Vector Machines: maths-guaranteed optimal separation, 
possible handling of structured input (graphs, etc…) via kernel; 
BUT not very efficient for multi-class (K times 1-vs-all SVMs, or at 
least log(K) times Ci-vs-Cj ), training computation rises quickly with 
input dim and # of examples O( max(N,D) * min(N,D)^2 )

• Boosting of « weak » classifiers: simple algo, can build strong 
classifier from any weak classifier, can select features during training; 
BUT not very efficient for multi-class (n times 1-vs-all)

• Random forests: OK for symbolic input, robustness to noise, very 
fast to compute, efficient for large # of classes and high input dim; 
BUT training sometimes long
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Model type choice criteria for 
SUPERVISED learning

MLP 

Neural 

Network

ConvNets SVM Boosting
Decision

Tree

Random 

Forest

Many classes + + -- -- ++

High dimension of input
- + ++

Many examples REQUIRED
(except if 

transfer-

learning)

-

Interpretability 

(« white » box)
- -- YES

Data OTHER than

vectors of values 

Only 

“grid” 

data

Structured 

(string, 

graph)

symbolic symbolic

Robustness to noise and

erroneous labels
+ + ++ -- ++

Ease/speed of training - --- + ++ +

Handling of features Learn 

them

Automated 

selection

Execution time - +++ +
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Some REFERENCE TEXTBOOKS 
on Statistical Machine-Learning

• Introduction au machine learning
C. Azencott, Dunod (2018).
https://www.dunod.com/sciences-techniques/introduction-au-machine-learning-0

• The Elements of Statistical Learning (2nd edition)

T. Hastier, R. Tibshirani & J. Friedman, Springer, 2009.
http://statweb.stanford.edu/~tibs/ElemStatLearn/

• Deep Learning
I. Goodfellow, Y. Bengio & A. Courville, MIT press, 2016.
http://www.deeplearningbook.org/

• Pattern recognition and Machine-Learning
C. M. Bishop, Springer, 2006.

• Introduction to Data Mining
P.N. Tan, M. Steinbach & V. Kumar, AddisonWeasley, 2006.

• Apprentissage artificiel : concepts et algorithmes
A. Cornuéjols, L. Miclet & Y. Kodratoff, Eyrolles, 2002.


