

Machine-Learning for SEQUENTIAL data

Pr. Fabien Moutarde Center for Robotics MINES ParisTech PSL Université Paris

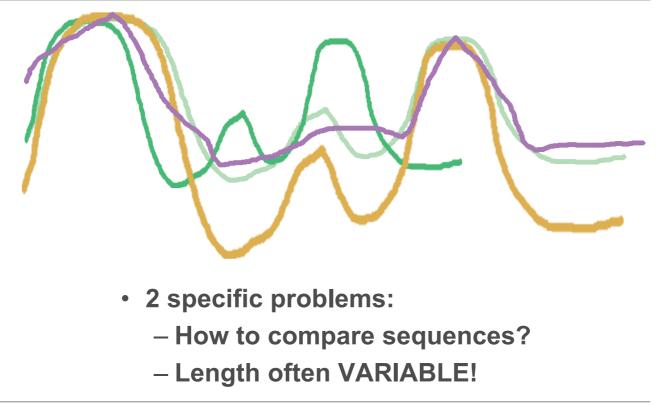
Fabien.Moutarde@mines-paristech.fr http://people.mines-paristech.fr/fabien.moutarde

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 1

Specificities of SEQUENTIAL data

- Alignment of sequences by DTW
- Model sequential data with HMM

Specificities of SEQUENTIAL data



Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 3

Handling COMPARISON of sequences

- 2 main types of approaches:
 - Alignment of sequences
 - → Dynamic Time Warping (DTW)
 - Model-based method
 - (e.g. Hidden Markov Model, HMM)

- 2 main types of approaches:
 - Time Resampling or Padding (but unapplicable for "stream" inline recognition)
 - Model-based methods: streaming successive inputs into a fixed-size model
 - Hidden Markov Model (HMM)
 - Recurrent Neural Network (RNN)

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 5

Specificities of SEQUENTIAL data

Alignment of sequence by DTW

Model sequential data with HMM

Dynamic Time Warping

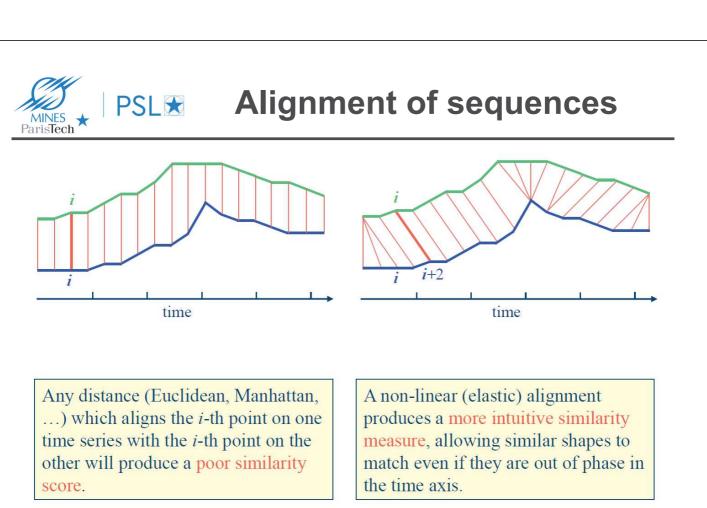
• Principle of DTW:

arisTech

PSL 🖈

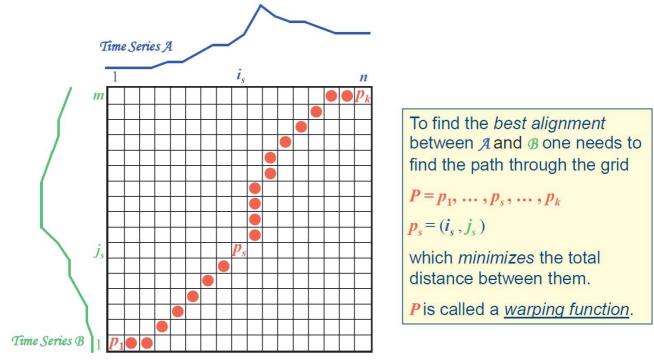
- 1. Align sequences and compute an adapted similarity measure
- 2. Perform recognition by template-matching with k Nearest Neighbors (using DTW similarity)

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 7

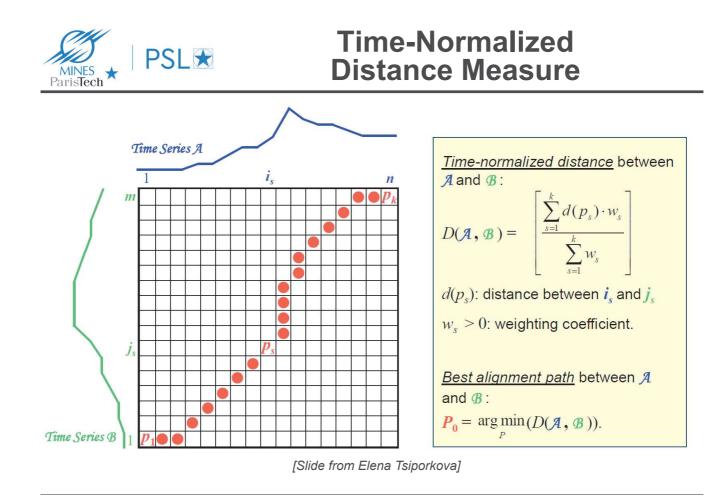


[Slide from Elena Tsiporkova]

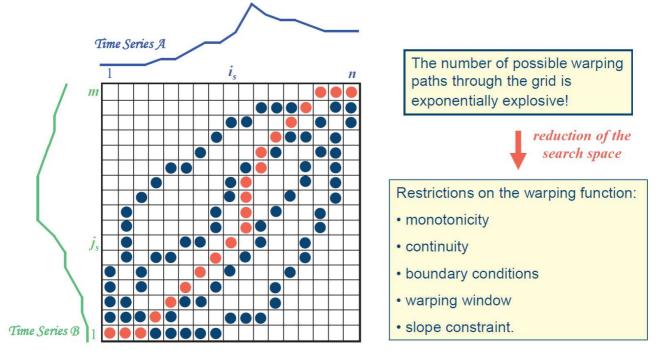
Warping function



[Slide from Elena Tsiporkova]

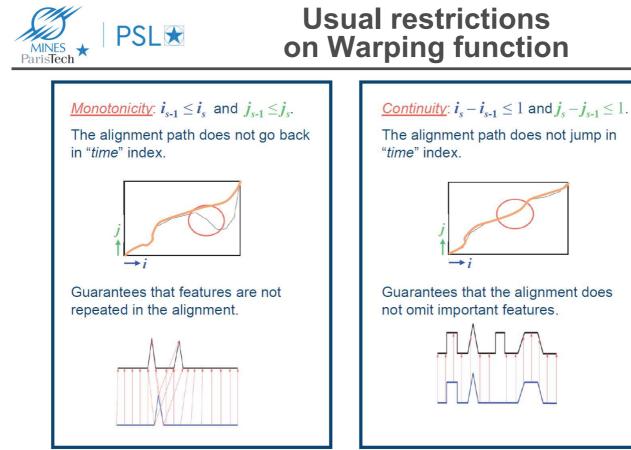


Optimizing DTW algorithm



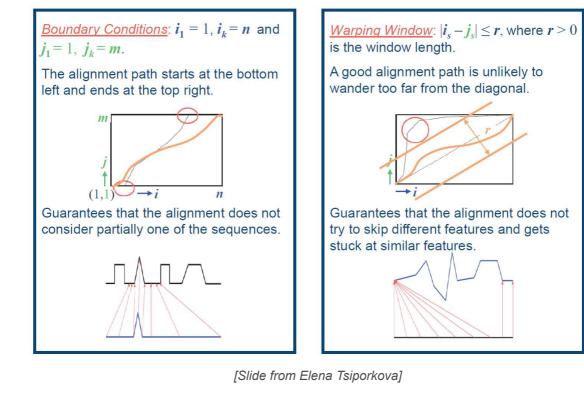
[Slide from Elena Tsiporkova]

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 11



[Slide from Elena Tsiporkova]

Other restrictions on Warping function



Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 13

Slope constraints on Warping function

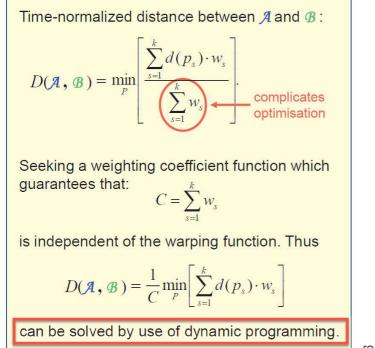
 Slope Constraint: $(j_{s_p} - j_{s_0}) / (i_{s_p} - i_{s_0}) \le p$ and $(i_{s_q} - i_{s_0}) / (j_{s_q} - j_{s_0}) \le q$, where $q \ge 0$ is the number of steps in the *x*-direction and $p \ge 0$ is the number of steps in the *y*-direction. After *q* steps in *x* one must step in *y* and vice versa: $S = p / q \in [0, \infty]$.

 The alignment path should not be too steep or too shallow.

 Prevents that very short parts of the sequences are matched to very long ones.

[Slide from Elena Tsiporkova]

PSL Choice of weighting coefficients



Weighting Coefficient Definitions Symmetric form $w_{s} = (i_{s} - i_{s-1}) + (j_{s} - j_{s-1}),$ then C = n + m. Asymmetric form $w_s = (\boldsymbol{i}_s - \boldsymbol{i}_{s-1}),$ then C = n. Or equivalently, $w_s = (\boldsymbol{j}_s - \boldsymbol{j}_{s-1}),$ then C = m.

[Slide from Elena Tsiporkova]

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 15

Pros and Cons of DTW

- Pros
 - Allows speed-insensitive and flexible alignment
- Cons
 - Computationally expansive
 - (especially for multi-variate time-series)
 - Vanilla version is OFFLINE (i.e. after gesture) BUT "STREAM DTW" version solves this issue

- Specificities of SEQUENTIAL data
- Alignment of sequence by DTW
- Model sequential data with HMM

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 17

What is a HMM?

HMM = Hidden Markov Model

Stochastic (probabilistic) model obtained by statistical analysis of sequences of many examples of same class

« The future is independent of the past, given the present »

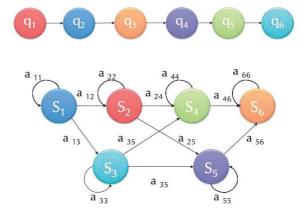
Andreï Andreïevitch Markov Андрей Андреевич Марков 2 June 1856 - 20 July 1921

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 19

Markov chains

Model definition

- Set of N States, {S₁, S₂,... S_N}
- Sequence of states Q ={q₁, q₂,...}
- Initial probabilities $\pi = \{\pi_1, \pi_2, \dots, \pi_N\}$ - $\pi_i = P(q_1 = S_i)$
 - Transition matrix A NxN
 a_{ij}=P(q_{t+1}=S_i | q_t=S_i)



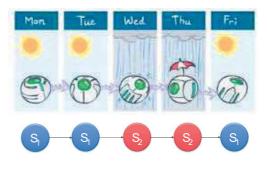
PSL Example of Markov chain

Example in weather forecasting

Weather model:

risTech

3 states {sunny, rainy, cloudy}



Problem:

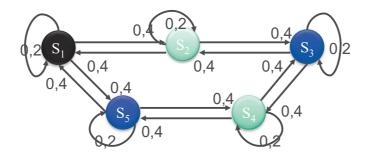
• Forecast weather state, based on the current weather state

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 21

Markov chain in action

Let's pick arbitrarily some numbers for $P(q_i|q_{i-1})$ and draw a probabilistic finite state

automaton



Question

Given that now the state is S_2 , what's the probability that next state will be S_3 AND the state after will be S_4 ?

Answer to Question

This translates into:

$$P(q_{2} = S_{3}, q_{3} = S_{4} | q_{1} = S_{2}) = P(q_{3} = S_{4} | q_{2} = S_{3}, q_{1} = S_{2})^{*}$$

$$P(q_{2} = S_{3} | q_{1} = S_{2})$$

$$= P(q_{3} = S_{4} | q_{2} = S_{3})^{*}$$

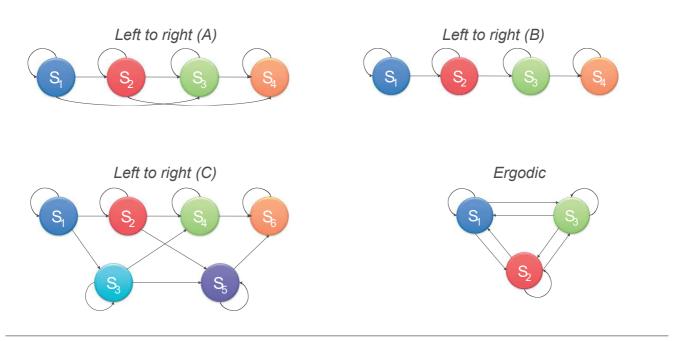
$$P(q_{2} = S_{3} | q_{1} = S_{2})$$

$$= 0.4 * 0.4$$

$$= 0.16$$

You can also think this as moving through the automaton, multiplying the probabilities





Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 25

HMM algorithms

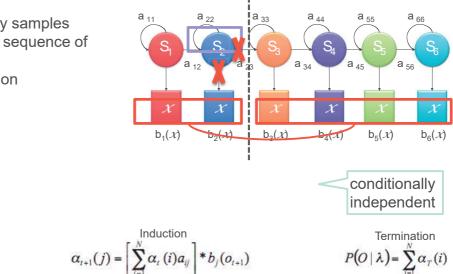
- Evaluation - O, $\lambda \rightarrow P(O|\lambda)$
- <u>Uncover the hidden part</u> - O, $\lambda \rightarrow Q$ that P(Q|O, λ) is maximum
- Learning $\{O\} \rightarrow \lambda$ such that $P(O|\lambda)$ is maximum

 $O,\,\lambda \to P(O|\lambda)\,?$

Solved by the Forward algorithm

Applications

- Find some likely samples
- Evaluation of a sequence of observations
- Change detection



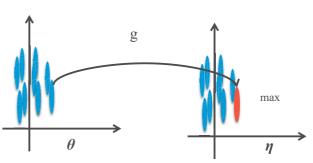
Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 27

Initialisation

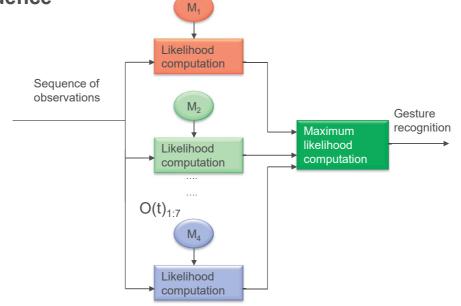
 $\alpha_1(i) = \pi_i * b_i(o_1)$

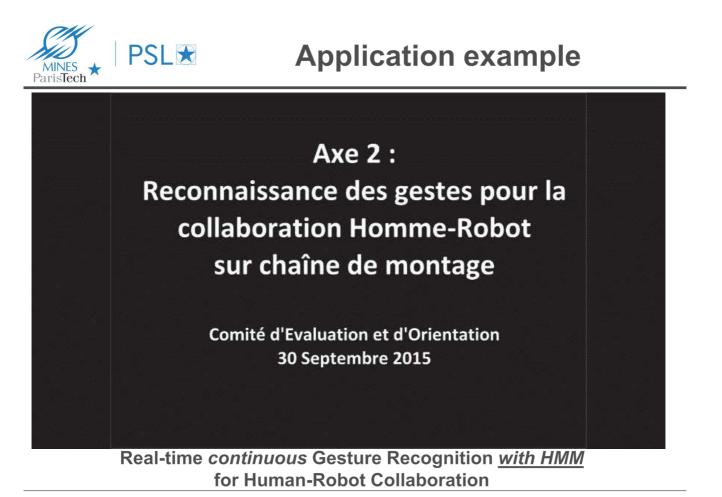
HMM learning

- $\{O\} \rightarrow \lambda$ such that $P(O|\lambda)$ is maximum
- No analytic solution
- Solved by Baum-Welch algorithm (which is particular case of Expectation Maximization [EM] algo) when some data is missing (the states)
- Applications
 - Unsupervised Learning (single HMM)
 - Supervised Learning (multiple HMM)



Typically, learn ONE HMM per class, and then sequentially feed data in <u>all</u> HMM, so each one updates likelihood of sequence





• Pros

- Natural handling of variable length

• Cons

 Many hyper-parameters (ARCHITECTURE and # of hidden states)

Machine-Learning for SEQUENTIAL data, Pr. Fabien Moutarde, Center for Robotics, MINES ParisTech, PSL, Oct.2021 32

- Sequential data raise specific problems:
 - what similarity measure should be used? (cf alignment problem)
 - Often variable length input
- Two main shallow ML approaches adapted to this specificities:
 - Dynamic Time Warping (DTW)
 - Hidden Markov Model (HMM)

Deep-Learning → Deep RECURRENT Neural Nets (LSTM, GRU) or 1D ConvNet over time

Any QUESTIONS ?