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Outline

• Standard Recurrent Neural Networks

• Training RNN: BackPropagation Through Time

• LSTM and GRU

• Applications of RNNs
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Recurrent Neural Networks
(RNN)
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Canonical form of RNN

Non-recurrent network
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Time unfolding of RNN
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Dynamic systems & RNN

If using a Neural Net for f, this is EXACTLY a RNN!

Figures from Deep Learning, Goodfellow, Bengio and Courville
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Standard (“vanilla”) RNN

State vector s ßà vector h of hidden neurons

ou yt=softMax(Whyht)
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Advantages of RNN

The hidden state s of the RNN builds a kind of 

lossy summary of the past

RNN totally adapted to processing SEQUENTIAL 

data (same computation formula applied at each 

time step, but modulated by the evolving “memory” 

contained in state s)

Universality of RNNs: any function computable by 

a Turing Machine can be computed by a finite-size 

RNN (Siegelmann and Sontag, 1995)
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RNN hyper-parameters

• As for MLP, main hyperparameter =

size of hidden layer (=size of vector h)
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• Training RNN: BackPropagation Through Time
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• Applications of RNNs

Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2021     12

RNN training

• BackPropagation Through Time (BPTT)

gradients update for a whole sequence 

• or Real Time Recurrent Learning (RTRL)

gradients update for each frame in a sequence

t+1
t
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t+4

Temporal sequence
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BackPropagation
THROUGH TIME (BPTT)

• Forward through entire sequence to compute SUM of 
losses at ALL (or part of) time steps

• Then backprop through ENTIRE sequence to compute 
gradients
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BPTT computation principle
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BPTT algorithm
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Vanishing/exploding gradient
problem

• If eigenvalues of Jacobian matrix >1, then gradients tend 

to EXPLODE 

è Learning will never converge. 

• Conversely, if eigenvalues of Jacobian matrix <1,

then gradients tend to VANISH 

è Error signals can only affect small time lags 

è short-term memory. 

èPossible solutions for exploding gradient: 
CLIPPING trick

è Possible solutions for vanishing gradient:
– use ReLU instead of tanh
– change what is inside the RNN!
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Long Short-Term Memory
(LSTM)

LSTM = RNN variant for solving this issue
(proposed by Hochreiter & Schmidhuber in 1997)

• Key idea = use “gates” that modulate respective 
influences of input and memory 

Problem of standard RNNs =

no actual LONG-TERM memory

[Figures from https://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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LSTM gates

Gate = pointwise multiplication by s in ]0;1[
è modulate between “let nothing through”

and “let everything through” 

• FORGET gate

• INPUT gate

è next state = mix between
pure memory or pure new

[Figures from https://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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LSTM summary

• OUTPUT gate 

ALL weigths Wf, Wi, Wc and Wo
(and biases) are LEARNT 

[Figure from Deep Learning book by I. Goodfellow, Y. Bengio & A. Courville]



Deep-Learning: Recurrent Neural Networks (RNN), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Oct.2021     21

Why LSTM avoids 
vanishing gradients?
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Gated Recurrent Unit (GRU)

Simplified variant of LSTM, with only 2 gates:
a RESET gate & an UPDATE gate 

(proposed by Cho, et al. in 2014)
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Typical usages of RNNs

Sequence

Sequence to Sequence
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Combining RNN with CNN

Input into RNN the features from 

last convolutional layer

For example, 

for image captioning
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Deep RNNs

Several RNNs stacked (like layers in MLP)
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Bi-directional RNNs

(e.g. for offline classification of sequence of words)
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Encoder-decoder RNN
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Applications of RNN/LSTM

Wherever data is intrinsicly SEQUENTIAL

• Speech recognition
• Natural Language Processing (NLP)
– Machine-Translation

– Image caption generator

• Gesture recognition 

• Music generation

• Potentially any kind of time-series!!
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Summary and perspectives on 
Recurrent Neural Networks

• For SEQUENTIAL data 

(speech, text, …, gestures, …)

• Impressive results in

Natural Language Processing (in particular

Automated Real-Time Translation)

• Training of standard RNNs can be tricky

(vanishing gradient…)

• LSTM / GRU now more used than standard RNNs
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Any QUESTIONS ?


