

UNSUPERVISED MACHINE-LEARNING

Pr. Fabien MOUTARDE Center for Robotics MINES ParisTech PSL Université Paris

Fabien.Moutarde@mines-paristech.fr

http://people.mines-paristech.fr/fabien.moutarde

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 1

PSL Machine-Learning <u>TYPOLOGY</u>

PSL Supervised vs UNsupervised learning

Learning is called "<u>supervised</u>" when <u>there are "target"</u> <u>values</u> for every example in training dataset:

examples = (input-output) = (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)

The goal is to build a (generally non-linear) approximate model for interpolation, in order to be able to GENERALIZE to input values other than those in training set

"<u>Unsupervised</u>" = when there are <u>NO target values</u>:

dataset = $\{x_1, x_2, \dots, x_n\}$

The goal is typically either to do datamining (unveil structure in the distribution of examples in input space), or to find an output maximizing a given evaluation function

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 4

Generative Learning

Generated fake faces

UNSUPERVISED learning from data

Typical example: "clustering"

- h(x) $\in C = \{1, 2, ..., K\}$ [each i $\leftarrow \rightarrow$ a "cluster"]
- J(h, X) : dist(x_i, x_j) smaller for x_i, x_j with $h(x_i) = h(x_j)$ than for x_i, x_i with $h(x_i) \neq h(x_j)$

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 6

Image: Stech ★ PSL★ Clustering (en français, regroupement ou partitionnement)

Goal = identify structure in data distribution

- Group together examples that are close/similar
- Pb: groups not always well-defined/delimited, can have arbitrary shape, and fuzzy borders

Similarity

- The larger a similarity measure, the more similar the points are
- ≈ inverse of distance

How to measure distance between 2 points $d(x_1; x_2)$?

- Euclidian distance: $d^{2}(\mathbf{x}_{1};\mathbf{x}_{2}) = \sum_{i} (\mathbf{x}_{1i} - \mathbf{x}_{2i})^{2} = (\mathbf{x}_{1} - \mathbf{x}_{2}) \cdot (\mathbf{x}_{1} - \mathbf{x}_{2}) [L_{2} \text{ norm}]$
- <u>Manhattan</u> distance: $d(\mathbf{x}_{1}; \mathbf{x}_{2}) = \Sigma_{i} |\mathbf{x}_{1i} - \mathbf{x}_{2i}| [L_{1} \text{ norm}]$
- <u>Sebestyen</u> distance: $d^{2}(\mathbf{x}_{1};\mathbf{x}_{2}) = (\mathbf{x}_{1}-\mathbf{x}_{2}) \cdot \mathbf{W} \cdot \mathbf{t} (\mathbf{x}_{1}-\mathbf{x}_{2})$ [with W=diagonal matrix]
- <u>Mahalanobis</u> distance: $d^{2}(\mathbf{x}_{1};\mathbf{x}_{2}) = (\mathbf{x}_{1}-\mathbf{x}_{2}) \cdot C \cdot (\mathbf{x}_{1}-\mathbf{x}_{2})$ [with C=Covariance matrix]

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 8

Typology of clustering techniques

- By <u>agglomeration</u>
 - Agglomerative Hierarchical Clustering, AHC [en français, Regroupement Hiérarchique Ascendant]
- By partitioning
 - Partitionnement Hiérarchique Descendant
 - Spectral partitioning (separation in the space of vecteurs propres of adjacency matrix)
 - K-means
- By <u>modelling</u>
 - Mixture of Gaussians (GMM)
 - Self-Organizing (Kohohen) Maps, SOM (Cartes de Kohonen)
- Based on data density

Agglomerative **Hierarchical Clustering (AHC)**

Principle: recursively, each point or cluster is absorbed by the nearest cluster

Algorithm

- Initialization:
 - Each example is a cluster with only one point
 - Compute the matrix M of similarities for each pair of clusters
- Repeat:
 - Selection in M of the 2 most mutually similar clusters C_i and C_i
 - Fusion of C_i and C_j in a more general cluster C_g
 - Update of M matrix, by computing similarities between C_g and all pre-existing clusters

Until fusion of the 2 last clusters

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 10

Distance between 2 clusters??

Min distance (between closest points):

 $\min(d(i,j) i \in C_1 \& j \in C_2)$

<u>Max</u> distance: max(d(i,j) $i \in C_1 \& j \in C_2$)

Average distance:

PSL 🖈

MINES *

 $(\Sigma_{i \in C1 \& j \in C2} d(i, j))/(card(C_1) \times card(C_2))$ distance between the 2 centroïds: $d(b_1; b_2)$

- Ward distance:

 $\operatorname{sqrt}(n_1n_2/(n_1+n_2)) \times d(b_1;b_2)$ [où $n_i = \operatorname{card}(C_i)$]

Each type of clusters inter-distance \rightarrow specific variant \neq of AHC

- distMin (ppV) \rightarrow single-linkage
- distMax \rightarrow complete-linkage

- dendrogram = representation of the full hierarchy of successively grouped clusters
- Height from a cluster to its sub-clusters ≈ distance between the 2 merged clusters

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 12

PSL 🗶

Clustering by partitionning: K-means algorithm

- Each cluster C_k defined by its « centroïd » c_k, which is a « prototype » (a vector template in input space);
- Each training example x is « assigned » to cluster C_{k(x)} which has centroïd nearest to x :
 k(x) = ArgMin_k (dist(x, c_k))
- ALGO :
 - Initialization = <u>randomly</u> choose K <u>distinct</u> points c₁,..., c_κ among training examples {x₁,..., x_n}
 - REPEAT until stabilization » of all c_k:
 - Assign each x_i to cluster $C_{k(i)}$ which has min dist(x_i , $c_{k(i)}$)
 - Recompute centroïds c_k of clusters: $c_k = \sum x / card(C_k)$

-0.	-0.7085	-0.708	-0.7075	-0.707	-0.7065	-0.706
				• • • • • •	• • • • • • • • • • • • • • • • • • • •	-0.4

- Learn the PROBABILITY DISTRIBUTION:
 - Restricted Boltzmann Machine (RBM)

– etc...

- Learn a kind of « PROJECTION » into a LOWER DIMENSION SPACE (« Manifold Learning ») :
 - <u>Non-linear</u> Principle Componant Analysis (PCA), (e.g. kernel-based)
 - Auto-encoders
 - Kohonen topological Self-Organizing Maps (SOM)

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 16

PSL Restricted Boltzmann Machine

- Proposed by Smolensky (1986) + <u>Hinton (2005)</u>
- Learns the probability distribution of examples
- Two-layers Neural Networks with BINARY neurons and <u>bidirectional</u> connections
- Use: $P(v,h) = \frac{1}{Z}e^{-E(v,h)}$ $P(v) = \frac{1}{Z}\sum_{h}e^{-E(v,h)}$

where $E(v,h) = -\sum_{i} a_i v_i - \sum_{j} b_j h_j - \sum_{i} \sum_{j} v_i w_{i,j} h_j$ = energy

 Training: maximize product of probabilities Π_iP(v_i) by gradient descent with Contrastive Divergence

$$\Delta w_{i,j} = \epsilon (vh^{\mathsf{T}} - v'h'^{\mathsf{T}})$$

v' = reconstruction from h and h' deduced from v'

Kohonen Self-Organizing Maps (SOM)

Another specific type of Neural Network

...with a self-organizing training algorithm which generates a MAPPING from input space to the Map THAT RESPECTS THE TOPOLOGY OF DATA

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 18

- VISUALIZE (generally in 2D) the distribution of data with a topology-preserving "projection" (2 points close in input space should be projected on close cells on the SOM)
- CLUSTERING

 IPSLE The Kohonen Neural Network
 only ONE layer of neurons = output MAP

 type of neurons = <u>DISTANCE neurons</u>
 use some defined "neighbourhood" on the output map

 each neuron should be seen as a vector in input space (corresponding to its vector of weights)
 USE after training: for each input vector X (in R^d), each neuron k on the Map compute its output = d(W_k,X)
 input X associated to the « winner » neuron = the one with smallest output
 non-linear projection R^d > map + possible use for clustering

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 20

Training principle of Kohonen SOM

• The output of neuron i with weight vector $W_i = (w_{i1}, ..., w_{in})$ when input is $X = (x_1, ..., x_n)$ is the Euclidian distance $d(X, W_i)$

TRAINING principle:

- Determine most active neuron (= closest)
- <u>Modify its weight vector to make it even closer to input</u>
 <u>+ MOVE ALSO NEIGHBORING NEURONS</u>
 <u>TOWARDS INPUT</u>
- 2 parameters: shape and size of neighbourhood (on Map) Weight modification step $\alpha(t)$ THEY BOTH DECREASE ALONG ITERATIONS

Neighborhoods on Kohonen Map

One possible type: finite-size with given shape

V_i(t) size normally <u>decreases when iteration t grow</u>

Another often used neighborhood type: « infinite » neigborhood with Gaussian width decreasing with iterations

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 22

KOHONEN MAP TRAINING ALGORITHM

- t=0, initialize weights (usually randomly)
- for each iteration t, present training example X and:
 - determine the <u>"winner" neuron g</u> (higher output = weight vector most similar to X)
 - determine learning step $\alpha(t)$ [and neighborhood V(t)]
 - modify weights:
 - $W_{i}(t+1) = W_{i}(t) + \alpha(t) (X-W_{i}(t)) \beta(i,g,t)$
 - with β (i,g,t)=1 if i \in V(t), or otherwise 0 [IF finite-size V(t)]
 - or $\beta(i,g,t) = \exp(-dist(i,g)^2/\sigma(t)^2)$ [Gaussian V(t)]
- t = t+1
- Training can be proved to converge under condition on α(t) (e.g. α(t) ∝ 1/t is OK, and often used)

[See demo applet?]

PSL Example applications of SOM

Result of a training on a dataset in which each example is a country represented by a vector of 39 indicators of quality of life (health, life duration expectation, nutrition, education services, etc...

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 24

ParisTech

Use of SOM for clustering

Analysis of distances between neurons of the SOM (U-matrix)

Grey level (darker = bigger distance)

Idem in « 3D view » (courbes de niveau)

Possibility of automated segmentation, which produces a clustering with no a priori on # and shapes of clusters

« ChainLink » example

« TwoDiamonds » example

Application of Kohonen to « text-mining »

- Each document represented as a histogram of the words it contains
- On the right, extract of a Kohonen map obtained with articles from Encyclopedia Universalis...

PSL 🖈

WebSOM (see demo, etc... at http://websom.hut.fi/websom)

UNSUPERVISED Machine-Learning, Pr. Fabien MOUTARDE, Centre for Robotics, MINES ParisTech, PSL, May2019 26

SOME REFERENCE TEXTBOOKS ON MACHINE-LEARNING

- <u>The Elements of Statistical Learning</u> (2nd edition)
 T. Hastier, R. Tibshirani & J. Friedman, Springer, 2009. http://statweb.stanford.edu/~tibs/ElemStatLearn/
 - <u>IICtp.//Statweb.Stailtoru.edu/~trbs/Eremstathearn/</u>
 - <u>Deep Learning</u> I. Goodfellow, Y. Bengio & A. Courville, MIT press, 2016. http://www.deeplearningbook.org/
- <u>Pattern recognition and Machine-Learning</u>
 C. M. Bishop, Springer, 2006.
- Introdution to Data Mining
 P.N. Tan, M. Steinbach & V. Kumar, AddisonWeasley, 2006.
- <u>Machine Learning</u>
 T. Mitchell, McGraw-Hill Science/Engineering/Math, 1997.
- <u>Apprentissage artificiel : concepts et algorithmes</u> A. Cornuéjols, L. Miclet & Y. Kodratoff, Eyrolles, 2002.