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Neural Networks:
from biology to engineering 

• Understanding and modelling of brain

• Imitation to reproduce high-level functions

• Mathematical tool for engineers
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Application domains

• Pattern recognition
• Voice recognition
• Classification, diagnosis

• Identification
• Forecasting
• Control, regulation

Modelling any input-output function 
by “learning” from examples:
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Biological neurons

• Electric signal: dendrites à cell body à> axon àsynapses

axon

Cell body

dendrite

synapse
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Empirical model of neurons

(electric) potential of 
membrane

Input

Frequency f

~ 500 Hz

sigmoïd

q (membrane potential)
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è Neuron output = periodic signal with 

frequency f » sigmoid(q) = sigmoid(Si Cifi)
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“Birth” of formal Neuron

• Mc Culloch & Pitts (1943)

- Simple model of neuron
- goal: model the brain
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Linear separation 
by a single neuron

linear separation

W.X

hyperplane 

with W.X – W0 = 0
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Theoretical model for learning

• Hebb rule (1949)

”Cells that fire together wire together”, ie synaptic weight 
increases between neurons that activate simultaneously
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First formal Neural Networks
(en français : Réseaux de Neurones)

Formal neuron of Mac Culloch & Pitts
+

Hebb rule for learning

• PERCEPTRON (Rosenblatt, 1957)

• ADALINE (Widrow, 1962)

Possible to “learn” Boolean functions 
by training from examples
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Training of Perceptron

è Linear separation

Training algorithm:

Wk+1 = Wk + vX if  X incorrectly classified (v: target value)
Wk+1 = Wk if X correctly classified

< W0Wk.X
> W0Wk.X

W.X
y

X W

• Convergence if linearly-separable problem
• ??  if NOT linearly-separable 
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Limits of first models, 
necessity of “hidden” neurons

• PERCEPTRONS, book by Minsky & Papert (1969)
Detailed study on Perceptrons and their intrinsic limits:

- can NOT learn some types of Boolean functions 
(even simple one like XOR)

- can do ONLY LINEAR separations

But many classes cannot be linearly-separated 
(by a single hyper-plane)

èNecessity of several layers in the Neural Network

è Requires new training algorithm 

CLASSE 1

CLASSE 2
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1st revival of Neural Nets

• GRADIENT BACK-PROPAGATION (Rumelhart 1986, Le Cun 85)

(en français : Rétro-propagation du gradient)

àOvercome Credit Assignment Problem by training Neural
Networks with HIDDEN layers

• Empirical solutions for MANY real-world applications

• Some strong theoretical results:
Multi-Layer Perceptrons are UNIVERSAL

(and parsimonious) approximators

• around years 2000’s: still used, but much less popular
than SVMs and boosting

USE OF DERIVABLE NEURONS
+

APPLY GRADIENT DESCENT METHOD
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2nd recent « revival »: 
Deep-Learning

• Since ~2006, rising interest for, and excellent results 

with ”deep” neural networks, consisting in MANY 

layers:

– Unsupervised ”intelligent” initialization of weights

– Standard gradient descent, and/or fine-tuning from initial 

values of weights

– Hidden layers è learnt hierarchy of features

• In particular, since ~2013 dramatic progresses in 

visual recognition (and voice recognition), with

deep Convolutional Neural Networks
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What is a FORMAL neuron? 

In general: a processing “unit” applying a simple operation
to its inputs, and which can be “connected” to others to
build a networks able to realize any input-output function

“Usual” definition: a “unit” computing a weighted sum of
its inputs, and then applying some non-linearity
(sigmoïd, ReLU, Gaussian, …)

DEFINITIONS OF FORMAL NEURONS
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General formal neuron

ei: inputs of neuron
sj: potential of neuron
Oj: output of neuron

Wij: (synaptic) weights
h: input function (computation of 

potential = S, dist, kernel, …)
f: activation (or transfer) function

f

ei Wij

Oj

h

sj

sj = h(ei, {Wij, i=0 à kj})

Oj = f(sj)

The combination of particular h and f functions
defines the type of formal neuron
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Summating artificial “neurons”

PRINCIPLE ACTIVATION FUNCTIONS

• Threshold (Heaviside or sign)
à binary neurons

• Sigmoïd (logistic or tanh)
à most common for MLPs

• Gaussian

• Identity  à linear neurons
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• Saturation

• ReLU (Rectified Linear Unit)
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“Distance” formal neurons

The potential of these neurons is the Euclidian DISTANCE 
between input vector (ei)i and weight vector (Wij)i

Input function:
ei Wij

Oj
DIST f
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Activation function =  Identity of Gaussian
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Kernel-type formal neurons

Examples of possible kernels:
–Polynomial: K(u,v)=[u.v + 1]p

–Radial Basis Function: K(u,v)=exp(-||u-v||2 / 2s2)
è equivalent to distance-neuron+gaussian-activation

–Sigmoïd: K(u,v)=tanh(u.v+q) 
è equivalent to summating-neurons+sigmoïd-activation

Input function: ( ) ( )weKweh ,, =

Activation function =  Identity

with K symmetric and ”positive” 

in Mercer sense: "y tq ò y2(x)dx < ¥, 

ò K(u,v)y(u)y(v)dudv³0

e
w

Oj
K Id



Introduction to (shallow) Neural Networks,  Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021    20

Networks of formal neurons

TWO FAMILIES OF NETWORKS

• FEED-FORWARD NETWORKS 
(en français, “réseaux non bouclés”):

NO feedback connection, 
The output depends only on current input (NO memory)

• FEEDBACK OR RECURRENT NETWORKS 
(en français, “réseaux bouclés”): 

Some internal feedback/backwards connection 
è output depends on current input 
AND ON ALL PREVIOUS INPUTS (some memory inside!)
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Feed-forward networks
(en français : réseau “NON-bouclé”)

Neurons can be ordered so that there 
is NO “backwards” connection

Time is NOT a functional variable, i.e. 
there is NO MEMORY, and the output 

depends only on current input

Input 
neurons

X1 X3X2 X4

1

2

3

4

5

Y1 Y2

Neurons 1, 3 and 4
are said “hidden”
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Feed-forward
Multi-layer Neural Networks

Input

Hidden layers 
(0, 1 or more)

Y1

Y2

X1

X2

X3

Output layer

For “Multi-Layer Perceptron” (MLP), 
neurons type generally “summating with sigmoid activation”

[terme français pour MLP : “Réseau Neuronal à couches”]

Connections
with Weights
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Recurrent Neural Networks

A time-delay is associated
to each connection Equivalent form
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Canonical form of 
Recurrent Neural Networks

Feedforward network

ui(t)
External inputs

............

..........
........

outputs yj(t) 

1 1 1.......

........

xk(t-1)
State variables 

xk(t)
State variables

The output at time t depend not only on external inputs U(t), 
but also (via internal “state variables”) on the 

whole sequence of previous inputs 
(and on initialization of state variables)
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Use of a Neural Network

• Two modes:

– training: based on examples of (input,output) couples, 
the network modifies

§ Its parameters W (synaptic weights of connections)

§ And also potentially its architecture A 
(by creating/eliminating neurons or connections)

–recognition:
computation of output associated to a given input
(architecture and weights remaining frozen)

y = F       (x)
A,Wweights W

architecture A

x y = F
A,W

(x)

input outputnetwork
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Training principle 
for Neural Networks

• Supervised training = adaptation of synaptic weights of
the network so that its output is close to target value for 
each example

• Given n examples (Xp; Dp), and the network outputs 
Yp=NN(Xp), the average quadratic error is

Training ~ finding W* =ArgMin(E), ie minimize the 
cost function E(W)

• Generally this is done by using gradient descent (total, 
partial or stochastic):

() () ()EgradtWtW W.1 l-=+

( ) ( )E W Y Dp p

p

= -å
2

[+ m(t)(W(t)-W(t-1))]
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Usual training algo for 

Multi Layer Perceptrons (MLP)

• Random initialization 

• Training by Stochastic Gradient Descent

(SGD), using back-propagation:
– Input 1 (or a few) random training sample(s)

– Propagate

– Calculate error (loss)

– Back-propagate through all layers from end to 

input, to compute gradient and update weights

Training a Neural Network 
= optimizing values of its weights&biases
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Back-propagation principle

Smart method for efficient computing of gradient
(w.r.t. weights) of a Neural Network cost function, 

based on chain rule for derivation.

Cost function is Q(t) = Sm loss(Ym,Dm), where m runs over 

training set examples

Usually, loss(Ym,Dm) = ||Ym-Dm||2  [quadratic error]

Total gradient: 
W(t+1) = W(t) - l(t) gradW(Q(t))  + m(t)(W(t)-W(t-1))

Stochastic gradient: 
W(t+1) = W(t) - l(t) gradW(Qm(t)) + m(t)(W(t)-W(t-1))

where Qm=loss(Ym,Dm), is error computed on only ONE example

randomly drawn from training set at every iteration and
l(t) = learning rate (fixed, decreasing or adaptive), m(t) = momentum 

Now, how to compute dQm/dWij?
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Backprop through fully-connected 

layers: use of chain rule derivative 

computation

wij

yjyifsi
sj f fskwjk

Otherwise, dj=(dEm/dsj)=Sk (dEm/dsk)(dsk/dsj)=Sk dk(dsk/dsj) =Sk dkWjk(dyj/dsj)

so   dj = (Sk Wjkdk)f'(sj) if neuron j is “hidden”

dEm/dWij =(dEm/dsj)(dsj/dWij)=(dEm/dsj) yi

Let dj = (dEm/dsj). Then   Wij(t+1) = Wij(t) - l(t) yi dj

If neuron j is output, dj = (dEm/dsj) = (dEm/dyj)(dyj/dsj) with Em=||Ym-Dm||2

so   dj = 2(yj-Dj)f'(sj) if neuron j is an output

(and W0j(t+1) = W0j(t) - l(t)dj)

è all the dj can be computed successively from last layer
to upstream layers by “error backpropagation” from output
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Animated illustration of 
Back-Propagation

Animated GIF from the good tutorial 

https://medium.com/datadriveninvestor/what-is-gradient-descent-intuitively-42f10dfb293f
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Universal approximation 
theorem

• For any continuous function F defined and
bounded on a bounded set, and for any e,
there exists a layered Neural Network with
ONLY ONE HIDDEN LAYER (of sigmoïd
neurons) which approximates F with error < e

Sussman 92

…But the theorem does not provide any clue about how 
to find this one_hidden-layer NN, nor about its size! 
And the size of hidden layer might be huge…

• The set of MLPs with ONE hidden layer of sigmoid 
neurons is a family of PARCIMONIOUS approximators: 
for equal number of parameters, more functions can be 
correctly approximated than with polynoms

Cybenko 1989
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Multi-layer (MLP) v.s.
single-layer (perceptron)

Single-layer à one linear separation by neuron

W.X

Multi-layer: any shape of boundary possible
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Pros and cons of MLPs

ADVANTAGES

• Universal and parsimonious approximators (& classifiers)

• Fast to compute

• Robustness to data noise

• Rather easy to train and program

DRAWBACKS

• Choice of ARCHITECTURE (# of neurons in hidden layer) 

is CRITICAL, and empiric!

•Many other critical hyper-parameters 

(learning rate, # of iterations, initialization of weights, etc…)

•Many local minima in cost function

• Blackbox: difficult to interpret the model
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Why gradient descent works 

despites non-convexity?
• Local minima dominate in low-Dim…

• …but recent work has shown 
saddle points dominate in high-Dim

• Furthermore, most local minima are close to 
the global minimum
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Saddle points in

training curves

• Oscillating between two behaviors:

– Slowly approaching a saddle point

– Escaping it
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METHODOLOGY FOR

SUPERVISED TRAINING OF 

MULTI-LAYER NEURAL NETWORKS
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Training set vs. TEST set

• Need to collect enough and representative examples

• Essential to keep aside a subset of examples that shall be
used only as TEST SET for estimating final generalization
(when training finished)

• Need also to use some “validation set” independant from
training set, in order to tune all hyper-parameters (layer
sizes, number of iterations, etc…)

• Space of possible input values usually infinite, and training
set is only a FINITE subset 

• Zero error on all training examples ¹ good results on 
whole space of possible inputs (cf generalization error ¹
empirical error…)     
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Optimize hyper-parameters

by "VALIDATION"
To avoid over-fitting and maximize generalization,
absolutely essential to use some VALIDATION
estimation, for optimizing training hyper-parameters
(and stopping criterion):

– either use a separate validation dataset (random split 
of data into Training-set + Validation-set)

– or use CROSS-VALIDATION:
• Repeat k times: train on (k-1)/k proportion of data + 

estimate error on remaining 1/k portion

• Average the k error estimations

S3

S2

S1

3-fold cross-validation:
• Train on S1ÈS2 then estimate errS3 error on S3

• Train on S1ÈS3 then estimate errS2 error on S2

• Train on S2ÈS3 then estimate errS1 error on S1

• Average validation error: (errS1+errS2+errS3)/3
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Some Neural Networks
training "tricks"

• Importance of input normalization

(zero mean, unit variance)

• Importance of weights initialization
random but SMALL and prop. to 1/sqrt(nbInputs)

• Decreasing (or adaptive) learning rate

• Importance of training set size
If a Neural Net has a LARGE number of free parameters, 

è train it with a sufficiently large training-set!

• Avoid overfitting by Early Stopping of training 

iterations

• Avoid overfitting by use of L1 or L2 regularization
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Avoid overfitting
by EARLY STOPPING

• For Neural Networks, a first method to avoid

overfitting is to STOP LEARNING iterations as 

soon as the validation_error stops decreasing

• Generally, not a good idea to decide the 

number of iterations beforehand. Better to 

ALWAYS USE EARLY STOPPING
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Avoid overfitting using

regularization penalty (weight decay)

For neural network, the regularization term is just 
norm L2 or L1 of vector of all weights:

K = Sm(loss(Ym,Dm)) + β Sij |Wij|
p

with p=2 (L2) or p=1 (L1)

à name “Weight decay”

Trying to fit too many 
free parameters with 

not enough information 
can lead to overfitting

Regularization = penalizing too complex models
Often done by adding a special term to cost function
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MLP hyper-parameters

• Number and sizes of hidden layers!!

• Activation functions

• Learning rate (& momentum) [optimizer]

• Number of gradient iterations!! (& early_stopping)

• Regularization factor

• Weight initialization

Introduction to (shallow) Neural Networks,  Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021    43

Tuning hyper-parameters of 

MLPs in practice

• Use ‘adam’ optimizer

• Test/compare WIDELY VARIED HIDDEN LAYER SIZES 
(typically 30;100;300;1000;30-30;100-100)

• Test/compare SEVERAL INITIAL LEARNING RATES
(typically 0.1;0.03;0.01;0.003;0.001)

• Make sure ENOUGH ITERATIONS for convergence 

(typically >200 epochs), but EARLY 

STOPPING on validation_error to avoid overfitting
(à check by plotting learning curves!!)
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Some (old) references on (shallow, 
i.e. non deep) Neural Networks

• Réseaux de neurones : méthodologie et applications, 
G. Dreyfus et al., Eyrolles, 2002.

• Réseaux de neurones formels pour la modélisation, la 
commande, et la classification, L. Personnaz et I. 
Rivals, CNRS éditions, collection Sciences et 
Techniques de l’Ingénieur, 2003.

• Réseaux de neurones : de la physique à la 
psychologie, 
J.-P. Nadal, Armand Colin, 1993.


