
Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 1

Introduction to

(shallow) Neural Networks

Pr. Fabien MOUTARDE
Center for Robotics

MINES ParisTech

PSL Université Paris

Fabien.Moutarde@mines-paristech.fr

http://people.minesparis.psl.eu/fabien.moutarde

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 2

Neural Networks:
from biology to engineering

• Understanding and modelling of brain

• Imitation to reproduce high-level functions

• Mathematical tool for engineers

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 3

Application domains

• Pattern recognition
• Voice recognition
• Classification, diagnosis

• Identification
• Forecasting
• Control, regulation

Modelling any input-output function
by “learning” from examples:

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 4

Biological neurons

• Electric signal: dendrites à cell body à> axon àsynapses

axon

Cell body

dendrite

synapse

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 5

Empirical model of neurons

(electric) potential of
membrane

Input

Frequency f

~ 500 Hz

sigmoïd

q (membrane potential)

f

q

å»
i

iifCq

è Neuron output = periodic signal with

frequency f » sigmoid(q) = sigmoid(Si Cifi)

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 6

“Birth” of formal Neuron

• Mc Culloch & Pitts (1943)

- Simple model of neuron
- goal: model the brain

xi

Wi
y

0

+1

S

x1

WD

W1

xD

threshold W0

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 7

Linear separation
by a single neuron

linear separation

W.X

hyperplane

with W.X – W0 = 0

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 8

Theoretical model for learning

• Hebb rule (1949)

”Cells that fire together wire together”, ie synaptic weight
increases between neurons that activate simultaneously

y
i y

j

W
ij

() ()tytytWdttW jiijij l+=+)()(

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 9

First formal Neural Networks
(en français : Réseaux de Neurones)

Formal neuron of Mac Culloch & Pitts
+

Hebb rule for learning

• PERCEPTRON (Rosenblatt, 1957)

• ADALINE (Widrow, 1962)

Possible to “learn” Boolean functions
by training from examples

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 10

Training of Perceptron

è Linear separation

Training algorithm:

Wk+1 = Wk + vX if X incorrectly classified (v: target value)
Wk+1 = Wk if X correctly classified

< W0Wk.X
> W0Wk.X

W.X
y

X W

• Convergence if linearly-separable problem
• ?? if NOT linearly-separable

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 11

Limits of first models,
necessity of “hidden” neurons

• PERCEPTRONS, book by Minsky & Papert (1969)
Detailed study on Perceptrons and their intrinsic limits:

- can NOT learn some types of Boolean functions
(even simple one like XOR)

- can do ONLY LINEAR separations

But many classes cannot be linearly-separated
(by a single hyper-plane)

èNecessity of several layers in the Neural Network

è Requires new training algorithm

CLASSE 1

CLASSE 2

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 13

1st revival of Neural Nets

• GRADIENT BACK-PROPAGATION (Rumelhart 1986, Le Cun 85)

(en français : Rétro-propagation du gradient)

àOvercome Credit Assignment Problem by training Neural
Networks with HIDDEN layers

• Empirical solutions for MANY real-world applications

• Some strong theoretical results:
Multi-Layer Perceptrons are UNIVERSAL

(and parsimonious) approximators

• around years 2000’s: still used, but much less popular
than SVMs and boosting

USE OF DERIVABLE NEURONS
+

APPLY GRADIENT DESCENT METHOD

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 14

2nd recent « revival »:
Deep-Learning

• Since ~2006, rising interest for, and excellent results

with ”deep” neural networks, consisting in MANY

layers:

– Unsupervised ”intelligent” initialization of weights

– Standard gradient descent, and/or fine-tuning from initial

values of weights

– Hidden layers è learnt hierarchy of features

• In particular, since ~2013 dramatic progresses in

visual recognition (and voice recognition), with

deep Convolutional Neural Networks

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 15

What is a FORMAL neuron?

In general: a processing “unit” applying a simple operation
to its inputs, and which can be “connected” to others to
build a networks able to realize any input-output function

“Usual” definition: a “unit” computing a weighted sum of
its inputs, and then applying some non-linearity
(sigmoïd, ReLU, Gaussian, …)

DEFINITIONS OF FORMAL NEURONS

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 16

General formal neuron

ei: inputs of neuron
sj: potential of neuron
Oj: output of neuron

Wij: (synaptic) weights
h: input function (computation of

potential = S, dist, kernel, …)
f: activation (or transfer) function

f

ei Wij

Oj

h

sj

sj = h(ei, {Wij, i=0 à kj})

Oj = f(sj)

The combination of particular h and f functions
defines the type of formal neuron

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 17

Summating artificial “neurons”

PRINCIPLE ACTIVATION FUNCTIONS

• Threshold (Heaviside or sign)
à binary neurons

• Sigmoïd (logistic or tanh)
à most common for MLPs

• Gaussian

• Identity à linear neurons

÷
÷
ø

ö
ç
ç
è

æ
+= å

=

jn

i

iijjj eWWfO
1

0

W0j = "bias"

ei
f

Wij

OjS

• Saturation

• ReLU (Rectified Linear Unit)

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 18

“Distance” formal neurons

The potential of these neurons is the Euclidian DISTANCE
between input vector (ei)i and weight vector (Wij)i

Input function:
ei Wij

Oj
DIST f

()å -=
÷÷
÷
÷

ø

ö

çç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

i

iji

kj

j

k

We

W

W

e

e

h
2

11

...,...

Activation function = Identity of Gaussian

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 19

Kernel-type formal neurons

Examples of possible kernels:
–Polynomial: K(u,v)=[u.v + 1]p

–Radial Basis Function: K(u,v)=exp(-||u-v||2 / 2s2)
è equivalent to distance-neuron+gaussian-activation

–Sigmoïd: K(u,v)=tanh(u.v+q)
è equivalent to summating-neurons+sigmoïd-activation

Input function: () ()weKweh ,, =

Activation function = Identity

with K symmetric and ”positive”

in Mercer sense: "y tq ò y2(x)dx < ¥,

ò K(u,v)y(u)y(v)dudv³0

e
w

Oj
K Id

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 20

Networks of formal neurons

TWO FAMILIES OF NETWORKS

• FEED-FORWARD NETWORKS
(en français, “réseaux non bouclés”):

NO feedback connection,
The output depends only on current input (NO memory)

• FEEDBACK OR RECURRENT NETWORKS
(en français, “réseaux bouclés”):

Some internal feedback/backwards connection
è output depends on current input
AND ON ALL PREVIOUS INPUTS (some memory inside!)

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 21

Feed-forward networks
(en français : réseau “NON-bouclé”)

Neurons can be ordered so that there
is NO “backwards” connection

Time is NOT a functional variable, i.e.
there is NO MEMORY, and the output

depends only on current input

Input
neurons

X1 X3X2 X4

1

2

3

4

5

Y1 Y2

Neurons 1, 3 and 4
are said “hidden”

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 22

Feed-forward
Multi-layer Neural Networks

Input

Hidden layers
(0, 1 or more)

Y1

Y2

X1

X2

X3

Output layer

For “Multi-Layer Perceptron” (MLP),
neurons type generally “summating with sigmoid activation”

[terme français pour MLP : “Réseau Neuronal à couches”]

Connections
with Weights

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 23

Recurrent Neural Networks

A time-delay is associated
to each connection Equivalent form

f f

0

1

11

2

x2

output

x1

x3

input

S S

00

output

f

f

x2(t)

x1(t)

x3(t)

input

1

x2(t-1)

1

x3(t-1)

x2(t-1)

1

x2(t-2)

1S

SS

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 24

Canonical form of
Recurrent Neural Networks

Feedforward network

ui(t)
External inputs

............

..........
........

outputs yj(t)

1 1 1.......

........

xk(t-1)
State variables

xk(t)
State variables

The output at time t depend not only on external inputs U(t),
but also (via internal “state variables”) on the

whole sequence of previous inputs
(and on initialization of state variables)

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 25

Use of a Neural Network

• Two modes:

– training: based on examples of (input,output) couples,
the network modifies

§ Its parameters W (synaptic weights of connections)

§ And also potentially its architecture A
(by creating/eliminating neurons or connections)

–recognition:
computation of output associated to a given input
(architecture and weights remaining frozen)

y = F (x)
A,Wweights W

architecture A

x y = F
A,W

(x)

input outputnetwork

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 26

Training principle
for Neural Networks

• Supervised training = adaptation of synaptic weights of
the network so that its output is close to target value for
each example

• Given n examples (Xp; Dp), and the network outputs
Yp=NN(Xp), the average quadratic error is

Training ~ finding W* =ArgMin(E), ie minimize the
cost function E(W)

• Generally this is done by using gradient descent (total,
partial or stochastic):

() () ()EgradtWtW W.1 l-=+

() ()E W Y Dp p

p

= -å
2

[+ m(t)(W(t)-W(t-1))]

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 27

Usual training algo for

Multi Layer Perceptrons (MLP)

• Random initialization

• Training by Stochastic Gradient Descent

(SGD), using back-propagation:
– Input 1 (or a few) random training sample(s)

– Propagate

– Calculate error (loss)

– Back-propagate through all layers from end to

input, to compute gradient and update weights

Training a Neural Network
= optimizing values of its weights&biases

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 28

Back-propagation principle

Smart method for efficient computing of gradient
(w.r.t. weights) of a Neural Network cost function,

based on chain rule for derivation.

Cost function is Q(t) = Sm loss(Ym,Dm), where m runs over

training set examples

Usually, loss(Ym,Dm) = ||Ym-Dm||2 [quadratic error]

Total gradient:
W(t+1) = W(t) - l(t) gradW(Q(t)) + m(t)(W(t)-W(t-1))

Stochastic gradient:
W(t+1) = W(t) - l(t) gradW(Qm(t)) + m(t)(W(t)-W(t-1))

where Qm=loss(Ym,Dm), is error computed on only ONE example

randomly drawn from training set at every iteration and
l(t) = learning rate (fixed, decreasing or adaptive), m(t) = momentum

Now, how to compute dQm/dWij?

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 29

Backprop through fully-connected

layers: use of chain rule derivative

computation

wij

yjyifsi
sj f fskwjk

Otherwise, dj=(dEm/dsj)=Sk (dEm/dsk)(dsk/dsj)=Sk dk(dsk/dsj) =Sk dkWjk(dyj/dsj)

so dj = (Sk Wjkdk)f'(sj) if neuron j is “hidden”

dEm/dWij =(dEm/dsj)(dsj/dWij)=(dEm/dsj) yi

Let dj = (dEm/dsj). Then Wij(t+1) = Wij(t) - l(t) yi dj

If neuron j is output, dj = (dEm/dsj) = (dEm/dyj)(dyj/dsj) with Em=||Ym-Dm||2

so dj = 2(yj-Dj)f'(sj) if neuron j is an output

(and W0j(t+1) = W0j(t) - l(t)dj)

è all the dj can be computed successively from last layer
to upstream layers by “error backpropagation” from output

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 30

Animated illustration of
Back-Propagation

Animated GIF from the good tutorial

https://medium.com/datadriveninvestor/what-is-gradient-descent-intuitively-42f10dfb293f

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 31

Universal approximation
theorem

• For any continuous function F defined and
bounded on a bounded set, and for any e,
there exists a layered Neural Network with
ONLY ONE HIDDEN LAYER (of sigmoïd
neurons) which approximates F with error < e

Sussman 92

…But the theorem does not provide any clue about how
to find this one_hidden-layer NN, nor about its size!
And the size of hidden layer might be huge…

• The set of MLPs with ONE hidden layer of sigmoid
neurons is a family of PARCIMONIOUS approximators:
for equal number of parameters, more functions can be
correctly approximated than with polynoms

Cybenko 1989

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 32

Multi-layer (MLP) v.s.
single-layer (perceptron)

Single-layer à one linear separation by neuron

W.X

Multi-layer: any shape of boundary possible

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 33

Pros and cons of MLPs

ADVANTAGES

• Universal and parsimonious approximators (& classifiers)

• Fast to compute

• Robustness to data noise

• Rather easy to train and program

DRAWBACKS

• Choice of ARCHITECTURE (# of neurons in hidden layer)

is CRITICAL, and empiric!

•Many other critical hyper-parameters

(learning rate, # of iterations, initialization of weights, etc…)

•Many local minima in cost function

• Blackbox: difficult to interpret the model

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 34

Why gradient descent works

despites non-convexity?
• Local minima dominate in low-Dim…

• …but recent work has shown
saddle points dominate in high-Dim

• Furthermore, most local minima are close to
the global minimum

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 35

Saddle points in

training curves

• Oscillating between two behaviors:

– Slowly approaching a saddle point

– Escaping it

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 36

METHODOLOGY FOR

SUPERVISED TRAINING OF

MULTI-LAYER NEURAL NETWORKS

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 37

Training set vs. TEST set

• Need to collect enough and representative examples

• Essential to keep aside a subset of examples that shall be
used only as TEST SET for estimating final generalization
(when training finished)

• Need also to use some “validation set” independant from
training set, in order to tune all hyper-parameters (layer
sizes, number of iterations, etc…)

• Space of possible input values usually infinite, and training
set is only a FINITE subset

• Zero error on all training examples ¹ good results on
whole space of possible inputs (cf generalization error ¹
empirical error…)

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 38

Optimize hyper-parameters

by "VALIDATION"
To avoid over-fitting and maximize generalization,
absolutely essential to use some VALIDATION
estimation, for optimizing training hyper-parameters
(and stopping criterion):

– either use a separate validation dataset (random split
of data into Training-set + Validation-set)

– or use CROSS-VALIDATION:
• Repeat k times: train on (k-1)/k proportion of data +

estimate error on remaining 1/k portion

• Average the k error estimations

S3

S2

S1

3-fold cross-validation:
• Train on S1ÈS2 then estimate errS3 error on S3

• Train on S1ÈS3 then estimate errS2 error on S2

• Train on S2ÈS3 then estimate errS1 error on S1

• Average validation error: (errS1+errS2+errS3)/3

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 39

Some Neural Networks
training "tricks"

• Importance of input normalization

(zero mean, unit variance)

• Importance of weights initialization
random but SMALL and prop. to 1/sqrt(nbInputs)

• Decreasing (or adaptive) learning rate

• Importance of training set size
If a Neural Net has a LARGE number of free parameters,

è train it with a sufficiently large training-set!

• Avoid overfitting by Early Stopping of training

iterations

• Avoid overfitting by use of L1 or L2 regularization

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 40

Avoid overfitting
by EARLY STOPPING

• For Neural Networks, a first method to avoid

overfitting is to STOP LEARNING iterations as

soon as the validation_error stops decreasing

• Generally, not a good idea to decide the

number of iterations beforehand. Better to

ALWAYS USE EARLY STOPPING

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 41

Avoid overfitting using

regularization penalty (weight decay)

For neural network, the regularization term is just
norm L2 or L1 of vector of all weights:

K = Sm(loss(Ym,Dm)) + β Sij |Wij|
p

with p=2 (L2) or p=1 (L1)

à name “Weight decay”

Trying to fit too many
free parameters with

not enough information
can lead to overfitting

Regularization = penalizing too complex models
Often done by adding a special term to cost function

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 42

MLP hyper-parameters

• Number and sizes of hidden layers!!

• Activation functions

• Learning rate (& momentum) [optimizer]

• Number of gradient iterations!! (& early_stopping)

• Regularization factor

• Weight initialization

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 43

Tuning hyper-parameters of

MLPs in practice

• Use ‘adam’ optimizer

• Test/compare WIDELY VARIED HIDDEN LAYER SIZES
(typically 30;100;300;1000;30-30;100-100)

• Test/compare SEVERAL INITIAL LEARNING RATES
(typically 0.1;0.03;0.01;0.003;0.001)

• Make sure ENOUGH ITERATIONS for convergence

(typically >200 epochs), but EARLY

STOPPING on validation_error to avoid overfitting
(à check by plotting learning curves!!)

Introduction to (shallow) Neural Networks, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2021 44

Some (old) references on (shallow,
i.e. non deep) Neural Networks

• Réseaux de neurones : méthodologie et applications,
G. Dreyfus et al., Eyrolles, 2002.

• Réseaux de neurones formels pour la modélisation, la
commande, et la classification, L. Personnaz et I.
Rivals, CNRS éditions, collection Sciences et
Techniques de l’Ingénieur, 2003.

• Réseaux de neurones : de la physique à la
psychologie,
J.-P. Nadal, Armand Colin, 1993.

