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What is a Decision Tree?

Classification by a tree of tests
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General principle of
Decision Trees

Classification by sequences of tests organized 
in a tree, and corresponding to a partition of input 
space into class-homogeneous sub-regions
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Example of Decision Tree

• Classification rule: go from root to a leaf by evaluating the 
tests in nodes

• Class of a leaf: class of the majority of training examples 
“arriving” to that leaf
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“Induction” of the tree?

Is it the best tree??
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Principle of binary Decision Tree 
induction from training examples

• Exhaustive search in the set of all possible trees is 
computationally intractable

èRecursive approach to build the tree:

build-tree(X)
IF all examples ”entering” X are of same class,  

THEN build a leaf (labelled with this class)   
ELSE
- choose (using some criterion!) the BEST 

(attribute;test) couple to create a new node
- this test splits X into 2 sub-trees Xl and Xr
- build-tree(Xl)
- build-tree(Xr)
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Criterion for choosing 
attribute and test

• Measure of heterogeneity of candidate node:

– entropy (ID3, C4.5)

– Gini  index (CART)

• Entropy: H = -Sk( p(wk) log2(p(wk)) ) with p(wk)

probability of class wk (estimated by proportion Nk/N)

à minimum (=0) if only one class is present 

à maximum (=log2(#_of_classes)) if equi-partition

• Gini index: Gini = 1 – Sk p2(wk)
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Homogeneity gain by a test  

• Given a test T with m alternatives and therefore 

orienting from node N into m “sub-nodes” Nj

• Let I(Nj) be the heterogeneity measures (entropy, 

Gini, …) of sub-nodes, and p(Nj) the proportions of 

elements directed from N towards Nj by test T

è the homogeneity gain brought by test T 

is Gain(N,T) = I(N)- Sj p(Nj)I(Nj)

èSimple algo = choose the test maximizing this gain
(or, in the case of C4.5, the “relative” gain G(N,T)/I(N), to avoid 

bias towards large m)



Decision Trees and Random Forests, Pr. Fabien MOUTARDE, Center for Robotics, MinesParis, PSL, Oct.2022      9

Tests on 
continuous-valued attributes

• Training set is FINITE à idem for the # of values 

taken ON TRAINING EXAMPLES by any attribute, 

even if continuous-valued

èIn practice, examples are sorted by increasing 

value of the attribute, and only N-1 potential 

threshold values need to be compared (typically, 

the medians between successive increasing values)

For example, if values of attribute A for training examples are 

1;3;6;10;12, the following potential tests shall be considered: 

A>1.5;A>4.5;A>8;A>11)

A1 3 6 10 12

Threshold values tested
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Stopping criteria and pruning

• “Obvious” stopping rules:

- all examples arriving in a node are of same class

- all examples arriving in a node have equal values for each 

attribute

- node heterogeneity stops decreasing

• Natural stopping rules:

- # of examples arriving in a node < minimum threshold

- Control of generalization performance (on independent 

validation set)

• A posteriori pruning: remove branches that are impeding 

generalization (bottom-up removal from leaf while 

generalization error does not decrease)



Decision Trees and Random Forests, Pr. Fabien MOUTARDE, Center for Robotics, MinesParis, PSL, Oct.2022      11

Criterion for a posteriori 
pruning of the tree

Let T be the tree, v one of its nodes, and:
• IC(T,v) = # of examples Incorrectly Classified by v in T

• ICela(T,v) = # of examples Incorrectly Classified by v 

in T’ = T pruned by changing v into a leaf

• n(T) = total # of leaves in T

• nt(T,v) = # of leaves in the sub-tree below node v

THEN the criterion chosen to minimize is:

w(T,v) = (ICela(T,v)-IC(T,v))/(n(T)*(nt(T,v)-1))

àTake simultaneously into account 

error rate and tree complexity
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Pruning algorithm

Prune(Tmax):

K¬0

Tk¬Tmax
WHILE Tk has more than 1 node, DO

FOR_EACH node v of Tk DO

compute w(Tk,v) on train. (or valid.) examples

END_FOR
choose node vm that has minimum w(Tk,v) 

Tk+1: Tk where vm was replaced by a leaf
k¬k+1

END_WHILE

Finally, select among {Tmax, T1, … Tn} the pruned tree that 

has the smallest classification error on the validation set
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Names of variants of 
Decision Tree variants

• ID3 (Inductive Decision Tree, Quinlan 1979): 

– only “discrimination” trees (i.e. for data with 
all attributes being qualitative variables)

– heterogeneity criterion = entropy

• C4.5 (Quinlan 1993): 

– Improvement of ID3, allowing “regression” trees (ie
continuous-valued attribute), and handling missing 
values

• CART (Classification And Regression Tree, 
Breiman et al. 1984):

– heterogeneity criterion = Gini
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Hyper-parameters for 
Decision Trees

• Homogeneity criterion (entropy or Gini)

• Recursion stop criteria:

– Maximum depth of tree

– Minimum # of examples associated to each leaf

• Pruning parameters
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Pros and cons 
of Decision Trees

• Advantages
– Easily manipulate “symbolic”/discrete-valued data

– OK even with variables of totally ≠ amplitudes
(no need for explicit normalization)

– Multi-class BY NATURE

– INTERPRETABILITY of the tree!

– Identification of “important” inputs

– Very efficient classification (especially for 
very-high dimension inputs)

• Drawbacks
– High sensitivity to noise and “erroneous outliers”

– Pruning strategy rather delicate
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Random (decision) Forests
[Forêts Aléatoires]

Principle: “Strength lies in numbers”

[en français, “L’union fait la force”]

• A forest = a set of trees

• Random Forest:

– Train a large number T (~ few 10s or 100s) of 

simple Decision Trees

– Use a vote of the trees (majority class, or even 

estimates of class probabilities by % of votes) 

if classification, or an average of the trees if 

regression

Algorithm proposed in 2001 by Breiman & Cutter
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Theoretical background of 
“ensembling” methods

Set-up a “committee of experts”
each one can be wrong, but combining opinions 

increases the chance to obtain correct prediction!

Individual error e

Spectacular improvement of decision 

(under condition that e<0.5!!)…

…and the larger N (# of experts), 

the bigger the improvement

Theoretical justification:
– suppose N independent classifiers, each with same error rate Egen= e

– decision by a “majority” vote is wrong if and only if more than half of

the committee is wrong
è !""#"$%&&'(()) = *

+,-/.

-
0+-1+ 2 3 1 -4+

”wisdom of the crowd” (?)

Decision Trees and Random Forests, Pr. Fabien MOUTARDE, Center for Robotics, MinesParis, PSL, Oct.2022      19

Learning of a 
Random Forest

Goal= obtain trees as decorrelated as possible 

Ì each tree is learnt on a random different subset (~2/3) 

of the whole training set

Ì each node of each 

tree is chosen as 

an optimal “split” 

among only k 

variables randomly

chosen from all d 

inputs (and k<<d)
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Training algorithm for 
Random Forest

• Each tree is learnt using CART without pruning 

• The maximum depth p of the trees is usually 

strongly limited (~ 2 à 5)

Z ={(x1,y1),…,(xn,yn)} training set, 
each xi of dimension d

FOR t = 1,…,T (T = # of trees in the forest)

• Randomly choose m examples in Z (à Zt)
• Learn a tree on Zt, with CART modified for 
randomizing variables choice: each node is 
searched as a test on one of ONLY k variables 
randomly chosen among all d input dimensions  
(k<<d, typically k~Öd)
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RdF ”Success story”

“Skeletonization” of persons (and movement 
tracking) with Microsoft Kinect™ depth camera

Algo of Shotton et al. 

using RDF for 

labelling body parts
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Hyper-parameters
for Random Forests

• The number of trees

• Maximum depth of trees

• The size of randomized subset of training 

examples

• The proportion K/D of attributes considered for 

inference of each tree
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Pros and Cons of 
Random Forests

• Advantages

– VERY FAST recognition

– Multi-class by nature

– Efficient on large-dimension inputs

– Robustness to outliers

• Drawbacks

– Training often rather long

– Extreme values often incorrectly estimated in case of 

regression


