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Introduction

Basics of Reinforcement Learning (RL)

RL as a Markov Decision Process (MDP)
= RL algos for tabular policies

Deep RL algos

— Policy Gradient: REINFORCE, TRPO, PPO
— Deep Q-learning: DQN

— Actor-Critic: A3C, SAC, DDPG

Example of DRL application:

learning to drive from vision in urban area
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2% ag =
Jo. 4 | PSL% Recent striking successes

MINES PARIS of Reinforcement Learning
(‘DM - Atari DQN ) DM - AlphaGo DM - AlphaZero
(2013, 2015) (2016, 2017) (2018)

=)

OpenAl - Dexterity OpenAl - Five DM - AlphaStar
(2018, 2019) (Dota 2 - 2019) (StarCraft [1 -2019)
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A2 |psL®  RL for Training Robots

MINES PARIS

}"'bgmonstmﬁon of the'task
.. _«~ia kinesthetic teaching

Combination of Learning from Demonstration (LfD) and Reinforcement Learning
[Robot Motor Skill Coordinationwith EM-based ReinforcementLearning, Kormushev et al. (IROS’2010)]
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earning complex robotic behavior
ith Deep Reinforcement Learning

AT | psLik
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Work by Google DeepMind
[Learning by Playing Solving Sparse Reward Tasks from Scratch, Riedmiller et al. (ICML’2018)]

Deep REINFORCEMENT Learning, Pr Fabien MOUTARDE, Center for Robotics, MINES PARIS, PSL March 2024 5

A | psL

MINES PARIS

RL for Locomotion Learning

Emergence of Locomotion Behaviours
in Rich Environments

Work by Google DeepMind
[Emergence of Locomotion Behaviours in Rich Environments, Heess et al. 2017]
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A | psL RL for Automated Driving:
MINES PARIS Mowards intelligent visual servoing

Preliminary experiment conducted by PhD student Marin Toromanoff
(CIFRE Valeo/MINES_Paris)
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* What is Reinforcement Learning?

decisions (actions)

consequences

observations
rewards
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Reinforcement Learning (RL)

GOAL.:
learn a BEHAVIOUR, i.e. being able to make
sequential decisions that realizes a goal task

« HOW?
By interaction with the environment

ﬂwronment

Re
Interpre tm
%’ L‘?L_?J
Reward hypothesis: Agent

Any goal can be formalized as the outcome of
maximizing a cumulative reward

Action
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A - Reinforcement Learning in
p%s | PoL% Machine-Learning typology

(Statistical)
Machine-Learning

[
Supervised Unsupervised Reinforcement
Learning Learning Learning
Classification |Regression | Clustering G?,?g;:t"sv €

Specificities of Reinforcement Learning:
* No supervision, only a reward signal
 Feedback can be delayed, not instantaneous
 Time matters
« Earlier decisions affect later interactions
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%, | Principle of
p{/s{:s | PSL* Reinforcement Learning (RL)
| Agent

i,

Vot i

' s, | Environment ]-'—-

~
Goal: find a “policy” a;=n(s;) that maximizes the
cumulated reward (=“return”) r; = Z Yory gy €10, 1]

K k=0 )

Deep Reinforcement Learning (DRL) if Deep NeuralNet used as
model (for policy and/or its “value”): DQN, Actor-Critic A3C, etc
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« STATE (of environment)

— Fully vs Partially observable
— Discrete vs Continuous

 POLICY
— Deterministic: a=n(s)
— vs Stochastic: conditional probability n(a|s)

« ENVIRONMENT

— With/without known MODEL giving s,,, = model(s,,a;)
— Stochastic vs Deterministic

- REWARD

— Scalar
— Must be hand-crafted so that
Max(cumulated_reward) < goal-task perfectly performed
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p . | psL% Value-function and Q-function

MINES PARIS

- State-value of a policy = expected cumulated reward
if applying policy & starting from a given state s

T
Vi(s) = Ex[Rylse = 5] = ]ET[Z VTerk|se = s]
k=0

» Action-value (Q-function) of a policy = expected
cumulated reward if applying policy & after taking action a
when in state s T

Qx(s,a) = E;[Ry|s; = 5,4y = a] = E”[Z Yruilse = s,a; = q
k=0

Note that V_(s)=Q,(s, n(s) ) and
Q. (s,a)=Z,p(s’|s,a)[r(s,a) +y V, (s")]
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MINES PARIS

A policy T, is better than another policy 7, iff
for all states s, Vry(s) 2 Vry(s)

A policy . is optimal iff better than all others

Vr,Vs € S,V x(s) = Vz(s)

= Optimal state-value and action-value functions
V.(s) = max,( V,(s) )
Q.(s,a) = max,(Q,(s,a))
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A | psLw Bellman equations
MINES PARIS (deterministic case)

Vn (St) - En (rt+1+yvn (St+l) | St=S )
= r (s, m(s))+ vV, (St+1)
The state-value function V, and action-value Q-function,
can be recursively estimated from their future values

Qr(sera)= E; (rt+1+yv7t(st+l) |St=Srat=a)
=r(s.,a) *Y V, (Si1)= r(s.,a) +Y0, (Stir, T(Seiq) )

Bellman optimality equations:
V' (s)= max, (r(s,a)+ yV'(s’)) }

Q" (s,a) = r(s,a)+ y max_,Q (s’,a’)

where s’ = state
after action a
taken in state s
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A | psL# Bellman equations
MINES PARS (stochastic case)

s)—ZW(a S)Zp 'Is,a)[r(s,a) + vV (s")]

The state-value functlon V, and action-value Q-function,
can be recursively estimated from their future values

Q" (s,a) = Y P(s|s,a) |R(s,a,s") +~v Y n(d'[sHQ™(s,a")
s'eS a'eA

Bellman optimality equations:

V' (s)= max_, (X..,p(s’|s,a)[r(s,a)+yWVW (s")])

Q*(s,a)= >_ P(s|s,a) [R(s a, s)—l—’ymaxQ (s, a)}

s’eS
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ol | PSL% Approaches for RL
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- Policy-based RL

Search directly for the optimal policy ©*
(= the policy achieving maximum cumulated reward)

- Value-based RL

Estimate first the maximal state-action value function
Q*(s,a) and then apply n* (s) = argMax_(Q* (s,a))

- Model-based RL

Build (or use) a model of the environment s.,;, = m(s,,a,)
then choose actions by planning (e.g. look-ahead)
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24 - RL as a
&s | PSLx Markov Decision Process

Finite RL problems can be mathematically
formalized as a Markov Decision Process (MDP),
i.,e.a<$, A P, R>tuple where

* S = Finite set of states

* A = Finite set of actions
P = Transition Probabilities (Markov property):

P, =P[St41=5"| St =5,A: = 3
« R = Reward function:

R =E[Rit1 | St = s, A: = 4]
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hﬁ% | PSL Markov D?R:nlglg)n Process

Finding optimal policy: Dynamic Programming
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}Zf | PSL Policy Iteration

MINES PARIS

1. Given an initial policy =, policy evaluation by
iterating Bellman equation:

Vi(s) =2, n(als) Z,.p(s’ | s,a) [ r(s,a) +y Vi(s')]
- converges to fixed point V_(s)

2. Improve policy greedily: ©’(s) = argMax_(Q_(s, a))

evaluation

Ve vy

™ Vv

7~ greedy (V)

improvement

Tr* i 'U*
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« Drawback of policy iteration =
computation cost, due to nested iterations for

policy evaluation

= directly estimate optimal state-value
function with 1 sweep of states by iterating

the Bellman optimality equation:

Via(s) =max,(Z,.p(s’|s,a)[r(s,a) +y Vi(s")])
- converges to fixed point V*(s)

* Then, deduce optimal policy from:
n*(s) = argMax,( Q*(s, a) )
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fj ps % 1emporal Difference (TD)

MINES PARIS

learning

- Faster algo for estimating V_of a policy

 Idea: instead of waiting estimation of
return (= final cumulated reward), update
V_(s) at every step during episods, until

ordinary Bellman equation becomes true

* Run episodes of policy &

— For each episod, at every step, use a.=n(s.)
to observe s.,; and r_,,, then update V_ by:

V(St) — V(St) + CY[

rey +YV(Si41)

TD target

= V(5)]
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MINES PARIS SARSA

« Acronym for State Action Reward State Action
* On-policy TD-learning of Q_:

Q(St, At) + Q(St, At) + af|riiq +YQ(St41, A1) |— Q(St, Ar)]
TD target

Sarsa: An on-policy TD control algorithm

Initinlize Q(s,a), Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
[nitialize S
Choose A from S using policy derived from @ (e.g., egreedy)
Repeat (for each step of episode):
Take action A, observe R, §'
Choose A’ from 8§’ using policy derived from @ (e.g., e-greedy)
Q(S, A) « Q(S,A) + a|R+~+Q(S', A") - Q(S, A)}
S+ 8: A A,
until § is terminal

* Policy: greedy from current Q
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epsilon-greedy policy

MINES PARIS

() argMax_( Q(s,a) ) with proba 1-¢
T(s)=
random with proba ¢

 The random part allows to maintain exploration

 Used during several RL training approaches
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Q-learning

MINES PARIS

« Off-policy TD learning of Q*, by using as
the optimality Bellman equation as target:

Q(StaAt) < Q(StaAt) + a[ ey T ymcz}x(Q(StH,a)) - Q(StyAt)]

TD target

Q-learning: An off-policy TD control algorithm

[nitialize Q)(s,a), Vs € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from § using policy derived from Q (e.g., e-greedy)
Tuke action A, observe R, 5’
Q(S, A) + Q(S, A) + a[R + ymax, Q(S',a) - Q(S, A)]
S+ 5
until S is terminal

Final policy n* = greedy(Q*)
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% Summary of
h%s | PSLA main tabular RLyaIgorithms

__ Type | Algoname | Basedon | Episods

Policy-based Policy Iteration Dynamic ON-policy
Programming

Value lteration Dynamic OFF-policy
Programming

Value-based gaRrsga TD-learning  ON-policy

Q-learning TD-learning OFF-policy
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On-policy vs Off-policy

MINES PARIS

On-policy: training episods are i (AL )
generated with policy being learnt
— Interaction trajectories (s0,a0,r0,
s1,a1,r1, ...) used for only ONE update
of the target policy = less efficient

— BUT training generally more stable

Off-policy: training episods can be
generated with other policies
— Easier to explore better

— More sample-efficient (episods can be
used several times)

— BUT training can be unstable

refloutdats (=08 0,0 )
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Curse of dimensionality

Q(s2,a1)  Q(s2,a2)

=» Instead of tabular, use parameterized function form
forV,Q,and =
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A | psLx Deep Reinforcement Learning

MINES PARIS (DRL)

-DRL=DL + RL
= use (Deep) Neural Network as
parameterized function for = and/or V, Q

-Learn using gradient-based optimization

- Possibility of image-based policy,
i.e. observed state = image(s), by using
Convolutional Network
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A | psLx 3 families of DRL algorithms

MINES PARIS

. e~ ¥
-Policy-based 79~ T
optimize a parameterized policy
Model-free

-Value-based Q(s,a.0) ~ Q" (s, a) ;ici:cely by

find the optimal (parameterized) Q-value trial-and-error

- Model-based (st at. 0') ~ Sty TEe1
-> choose actions by planning
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A0 | psL# Policy gradient

MINES PARIS

- Principle: find argMaxq E {Zf’rtlm]

t>0

by gradient ASCENT on 0 of J(0) = E, ) [r(7)]
= /r('r)p('r; 6)dr

where r(t) = cumulated reward on trajectory

T = (S0, 0,70, S1,- - -)

= Need to compute V,J(§) = / r(7)Vep(T;0)dT

T
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A7 | pstx REINFORCE algorithm

MINES PARIS

- The « vanilla » Policy Gradient

. Trick to compute Vep(7;6) :

Vop(7;0) = p(7;0) v;g,(,’ré)g)

= p(1;60)Vglogp(;0)

> V,J(0) = / (r(r)V log p(r0)) p(r; O)dr

T

= Errp(r;0) [r(T) Ve log p(7; )]
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A7 | psLx REINFORCE algorithm (2)

MINES PARIS

Computation of Vglogp(r;0)]:
We have: p(r;6) = [[ p(set1st, ac)ma(ar|se)

>0

Thus: logp(r;0) = Zlogp(sﬁﬂst, at) + log mo(acse)
t>0
And when differentiating: Vs logp(r;0) = > _ Vg logma(asls:)

t>0
Therefore when sampling a trajectory 7,

VoJ(0) = Errp(r0) [r(T) Ve log p(T;0)]

A Z r(T)Velogmg(as|st)

t>0
REINFORCE algorithm: Return along
_ ; trajectory
= 1. sample {7} from 7y(as|s;) estimated by

2. VoJ(8) = >, (Zt Vg log 7y (aﬂs,’g)) (Zt r(st, aé)) Monte-Carlo
Q= 3 094 CI{VQJ(H) random rollouts
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MINES PARIS

- High variance of gradient - slow convergence
- Rewards are relative, not absolute
> REINFORCE with «baseline»:

Substract a reward bias to reduce variance, and
push-up only trajectories with high rewards

+ discount rewards along trajectories
- Need to avoid large gradient steps

Step too far = bad policy § %Q

—> Next batch: collected under bad policy
—> Can’t recover, collapse in performance!

- Sample-inefficient
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& |psLx Policy gradient variants

MINES PARIS to mitigate drawbacks

> TRPO (Trust Region Policy Optimization):
Add KL divergence constraint to avoid too large
policy updates

> PPO (Proximal Policy Optimization):
Add KL div. penalty to reduce big policy updates

+ Another way to reduce gradient variance and
improve sample-efficience = estimate cumulated
rewards with a parameterized function, rather than

by Monte Carlo (random rollouts) = Actor-Critic
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ol | psL% Deep Q-learning (DQN, etc)

MINES PARIS
Value-based DRL.:
Q-learning with parameterized Q-function

learned value

- In standard Q-learning:

Q" (st,at) + (1 — ) - Q(ss,a¢) + o o + vy : max Q(s¢+1,a) )
N, \‘\/ S~ o a
old value learning rate reward  discount factor

estimate of optimal future value

converges to Q*

>(Loss for learning parameterized Q*, with gradient:\
L(s, a, 741, 5e41,0) = (req1 + 7111;1.}{ Q(st+1,a,0) —Q(s4, as, 9))2

- -
il

\_ target J

- Once Q*, trained, optimal policy:
¥ (s) = arg max Q+(s, a)
a
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o e 'psLx Q-function Neural Network

MINES PARIS

Use one output per possible action
(rather than using action as 2"9 input)

- Q-value for action 1

""J--

N I Q-value for action 2
State eura '

Network

‘K\N"'--.

“~Q-value for action n

If state = image(s), use Convolutional Network

1st hidden 2nd hidden 3rd hidden

Input layer layer layer output
—— = L% Q(s4,a")
| N w . &Qua)
" - _eY .. connected :connected : Q(st,a”)
8x8x4 filter
stride 4 ™. H 1axax16 filter . :
- stride 2 D—)/O
84x84x4 20x20x16 9x9x32 256 4~18
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4 | Stability issues of
%s | PSLE Deep Q-learning

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

http://videolectures.net/rldm2015 silver reinforcement learning/
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A | psLx DQN tricks that
MINES PARIS __make Deep Q learning work

DQN provides a stable solution to deep value-based RL

1. Use experience replay
» Break correlations in data, bring us back to iid setting
» Learn from all past policies
» Using off-policy Q-learning

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

http://videolectures.net/rldm2015 silver reinforcement learning/
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i Double DQN and
h%s | PsLi® (Prioritized) Experience Replay

DQN Loss

A
Q(s,3; 6) max, Q(s;a’; 67)
Copy eve Target

N updates Q Network

Gradient
wrt loss

argmax_ Q(s,a; 6)

Environment hNEEEEEEEEEN O Network

Store
(s,ans’)

+ Prioritized Replay: select in replay memory
with higher probability the transitions with
larger TD (7t + 7 max Ques (641, 3) — Qulxt, 1))
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MINES PARIS

- Among most sample-efficient DRL algo

- Only one Neural Network to train
(# Actor-Critic)

- But limited to discrete output
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ol | PSL% DQN improvement variants

MINES PARIS

- Double DQN

- Duelling DQN

- Rainbow

- IQN (Implicit Quantile Network)
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s | PSL% Actor-Critic
MINES PARIS
Actor-Critic principle = S me
use 2 parameterized functions: E
- policy m, (s) —
- state-value function v©4 (s) T
Crtenm. ' |

Algo combines policy-gradient & Q- Iearnmg

Lea rn 71:9 NTC Wlth e k’”’ﬁ;x;i’“fdﬂ%%\““xﬂ
p OII cy gr ad’ en t USing Vn(D i:."f/‘/ Value Fundtuon \;‘enlicy \\"«\
« V7 is learnt to fit observed | (" xi
cumulated rewards \ VelverBased | - GEEC ] Policy-Based |
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Actor-Critic Algo

fit V7

fitamodelto
estimate return

generate
run the policy)

t improve the

policy

0+ 0+ aVyJ(0

Estimating cumulated rewards with a parameterized function,
rather than by Monte Carlo (random rollouts)
= reduces policy gradient variance + improves sample-efficience
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7  psL* Advantage Actor-Critic (A2C)

MINES PARIS

Advantage of a policy: A™(s,a) = Q"(s,a) — V™(s)

measures how better it is to choose action a instead of r(s)

A2C: replace r(t) by A*; in Policy Gradient estimate
/~ Batch A2C algo: I

@ 1. sample {Si:ai} from m(als)

2. fit V“( ) to sampled reward sums

3. evaluate A”(s% a;) = r(s;,a;) + ’\/VJ(S;) - Vg(sq)
4. Vo J(0) = >, Vglog Tg(ai|si)zi”(si,ai)
\= 5 0 0+aVeJ(©) .

/" Online A2C algo: )
&> 1. take action a ~ mgy(als), get (s,a,s’,r)
2. update V”r using target r + "/V”(s’)
evaluate A”(s a) =r(s,a) + ny’T( - Vg(s)
Vo J(0) = Vylogmg(als) A7 (s, a)
kg 5. 0 + 0+ aVyJ(8) )

onll o
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28 A A3C: Asynchronous
»ﬁmms | PSL Advantage Actor Critic

Global Network

Poicynis) | vis) |

Input (s) ’ Sends gradients
o back

& & = o
) v — N J

Worker 1 Worker 2 Worker 3 Worker n
$ $ $ }
Environment 1 Environment 2 Environment3 ... Environmentn

=» Parallel learning in
several instances of environment
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s 'psL  Soft Actor Critic (SAC)

MINES PARIS

- Off-policy Actor-Critic (~soft Q-learning + PG)
- Maximizes not only return, but also entropy of
the policy = (for better exploration):

T(mo) = Ex,[Y,_ 7' Rlse,a0) + aH(x(.|s0))

- Learn 3 Neural Networks: 7y, Qg, V

Algorithm 1 Soft Actor-Critic
Inputs: The learning rates, Ar, Ao, and Ay for functions mg. @, and V,,
respectively; the weighting factor 7 for exponential moving average.

v

1: Initialize parameters €, w, ¢, and ).
2: for each iteration do

3: (In practice, a combination of a single environment step and multiple
gradient steps is found to work best.)

4: for each environment setup do

ay ~ m(ay|st)
6: St+1 N/)W(.Sf+]|b‘f.(lf)

D+ DU {(sp.ap,r(se.ar), 8141}
8: for each gradient update step do
9: Y — ¥ — AvVydv ().
10: w — w — AoV Jo(w).
11: 00—\ Vo (0).
12: U — 1Y+ (1= 7))
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| Deep Deterministic
MINES PARIS Policy Gradient (DDPG)

Critic Actor

Off-policy Actor-Critic
~ A3C+DQN combined
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A | ps DDPG algorithm

MINES PARIS

» Incorporate replay buffer and target network ideas from DQN for increased
stability

» Use lagged (Polyak-averaging) version of @, and my for fitting Q,; (towards
Q™) with TD(0)

Qe = re + YQu (ses1, T(se41; 0))

» Pseudocode:

for iteration=1.2.... do
Act for several timesteps, add data to replay buffer
Sample minibatch
Update 7 using g o< V, 22;1 Q(se, (s, 245 0))

Update @, using g oc Vo 31 (Qu(se, ac) — Q1)
end for
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% Summary of
h%s | PSLi main DRL algor},thm types

Output type

REINFORCE ON-policy Continuous

Policy-based TRPO ON-policy Continuous
PPO ON-policy Continuous
A3C ON-policy Continuous

Actor-Critic SAC OFF-policy Continuous
DDPG OFF-policy Continuous

Value-based 2Ll OFF-policy Discrete

& variants
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% ‘ How to choose
&, s DRL algorithm?

are you
leaming ina
& | simulator? | Ve,
is simulation cost
how patient negligible
& are you? /e o compared 1o
o K] Ly training cost? 5
'\&Qb k’a{’ : @J‘
model-based Off-policy RL: ~ On-policy RL;
RL (GPS, value-based (DQN, etc), or policy gradient (TRPO, PPO), or
elc.) off-policy Actor-Critic (SAC, DDPG) on-policy Actor-Critic (A3C)

+ Need continuous-valued output of policy
vs. Can use discrete actions
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P . | psL% Policy Gradient vs Q-learning

MINES PARIS

- Policy gradients: very general but suffer from high variance so
requires a lot of samples. Challenge: sample-efficiency

- Q-learning: does not always work but when it works, usually more
sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(0), often good
enough!
- Q-learning: Zero guarantees since you are approximating Bellman
equation with a complicated function approximator

Main State-of-the-Art DRL algos:
DDPG or SAC (off-policy Actor-Critic continuous ouput)
OR
DQN-rainbow/IQN (off-policy Q-learning, discrete output)
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A | psLw Outline

MINES PARIS

* Introduction
Basics of Reinforcement Learning (RL)

RL as a Markov Decision Process (MDP)
= RL algos for tabular policies

Deep RL algos

— Policy Gradient: REINFORCE, TRPO, PPO
— DQN

— Actor-Critic: A3C, SAC

Example of DRL application:
learning to drive from vision in urban area
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P . | PSL* Application domains for RL

MINES PARIS

* Playing games
* Robots:

— Locomotion Learning

— Task Learning

— Navigation/path-planning
* Automated Driving
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}Zf | PSL* Idea of end-to-end driving

MINES PARIS
Sensors L
(cameras, ; Trajectory Driving wheel,
radar, —| Perception - Planning — Control ~— ™ Acceleration
LIDAR, etc...) or braking

Current architecture for automated driving

N BN

mmmmmmmmm

T i " )
L I

ﬂﬁ ==
V" ‘

vs. HUMAN driving =
turn/accelerate-brake by just looking in front
=~ “intelligent” visual servoing
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A | psLx Principle of

MINES PARIS end-to-end drIVIng
Sensors Driving wheel
, ! Traject riving wheel,
™~ | perception | Pranning ~|  control " Acceleration
LIDAR, etc...) or braking
Current architecture for automated driving |

vs. HUMAN driving: turn/brake by just looking in front!
=~ “intelligent” visual servoing

v

Sensors o L . Driving wheel,
(cameras, | Imitation Learning or »  Acceleration
radar. | Rei : . .

’ einforcement Learnin k
LIDAR, etc...) 9 or braking
Network

Driving Control

computed
steering

command : ; :
interface
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}/Zf | PSL* Deep RL for automated driving

MINES PARIS

- Until recently, very few published research, and
mostly in racing games:

Asynchronous methods for deep reinforcement learning, V. Mnih, A. P. Badia, M. Mirza,
A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, ICML’2016.

, Maximilian Jaritz, Raoul
De Charette, Marin Toromanoff, Etienne Perot, Fawzi Nashashibi, ICRA 2018 - IEEE
International Conference on Robotics and Automation, Brisbane, Australia, May 2018.

- Up to now, only real driving with RL:

1. "Learning to Drive in a Day" (Kendall et al., 2018) [Cambridge]

- Embed DRL in a real car, and learn « from scratch »
- But VERY SIMPLE CASE: lane keeping along 250m!

- Simulation used before to design architecture + tune hyper-parameters
2. "Learning Robust Control Policies for End-to-End

Autonomous Driving from Data-Driven Simulation™
(Amini et al., 2020) [MIT]
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A | ps

MINES PARIS

Preliminary DRL experiment
for end-to-end driving

[Work by my Valeo CIFRE PhD student Marin Toromanoff]
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End-to-end driving learning
MINES PARIS by RL in racing-car simulator

State encoder
| — Policy Metwork

64

Rallye Game
e &

is
Hrward

API
Enviranment state

H I

, International conference on
Computer Vision and Pattern Recognition - Workshop, Honolulu, United States, Jul. 2017
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. End-to-end driving learnt by
MINES PARIS ~ RL in raCing'Car simulator

Performance Test on training track Snow (SE)

Trained for 196 million steps

4:0015"977
full 111 -

Network input and
guided backpropagation

—et

Game graphics

Layer 1 Layer 2

Activations

, Maximilian Jaritz, Raoul De Charette, Marin
Toromanoff, Etienne Perot, Fawzi Nashashibi, ICRA 2018 - IEEE International Conference on Robotics
and Automation, Brisbane, Australia, May 2018.
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| . RL for Automated Driving:
MINES PARIS why learn in a simulator?

- RL require HUGE amount of trial & error, and
initial policy = very bad driving!
= Learn in simulation (for safety + speed)

- Still few driving simulators adapted for DL and
RL, and best ones not totally mature

Simulateur | GTA  DeepDrive.io  AirSim |CARLA[1]
Flexibilité [ T L
Variété | -+ - — : i
Complexité/Réalisme | +-+
Objets mobiles | -+ 1
Vitesse éxecution | - + i
Multi-agent

- Choice of CARLA

[1] A. Dosovitskiy: CARLA: An Open Urban Driving Simulator (2017)
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CARLA simulator

Speed; 15 kmv/h
Gear i

Speed Limt 30 km/h
Traffic Light. Red

Location (327, -2, 38B) .
Qrientation C=0.99_ 0.7, -0.00)
Acceleration (0.30, 0.24, -0.02)

- Open source, flexible
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CARLA

- Itinerary to be followed in a city (given by 4 possible
orders at intersections: Left, Straight, Right, Follow_Lane)

BUT must stay on the road, in the lane, respecting
Traffic Lights, and no collision with pedestrians
and other cars!

- Evaluation metrics = Task completion & Distance
between infractions, in an UNSEEN CITY
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24 .
A Our Valeo-MINES Paris
h%s ‘ PSI‘@approach for Carla AD challenge

- Value-based (DQN family) SotA and optimized
Deep Reinforcement Learning algorithm

- Specific architecture for driving ConvNet

- Image-encoding part of convNet
pre-trained with supervised learning

- Rewards as Natural as possible (close to
human description of driving task)

"End-to-End Model-Free Reinforcement Learning for Urban Driving using
Implicit Affordances", M.Toromanoff, E.Wirbel & F.Moutarde, CVPR’2020
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A2 | psL DRL used: Rainbow + IQN + ApeX

MINES PARIS

- Rainbow [1] = combination of many improvements
of DQN [4] = currently SoA on ATARI benchmark

-IQN [2] = learning with probability distributions
rather than just expectation of average

Mean | Median | Human Gap | Seeds
DQN 228% 79% 0.334 I
PRIOR. 434% 124% 0.178 I
C51 701 % 178% 0.152 I
RAINBOW | 1189% 230% 0.144 2
QR-DQN B649% 193% 0.165 3
IQN 1019% 218% 0.141 5

- Ape-X [3] multi-agent version of DQN allowing
massively parallel distributed learning
= Largely better performance, but typically require
22 billions of frames (vs. 200 millions)

1] M. Hessel etal : Rambow: Combining Improvements in Deep Reinforcement Learning Matteo (2017)
2] D. Silver et al : Implicit Quantile Networks for Distributional Reinforcement Learning (2018)

3] B. Horgan et al : Distributed Prioritized Experience Replay (2018)

4] V. Mnih etal : Human-level control through deep reinforcement learning (2015)
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AT | psLx Reward shaping

MINES PARIS
Rerwinend
. l !:llilHI'l-.'l':'rtl.'l
Rewards scaled in [-1, 1]: 0 ~ sciochin 4
- Lateral position: negative | SO A N < agert desth

reward depending on
distance to lane center
« Speed: positive reward to
follow speed, depends on &

obstacles & traffic light -
* Episode terminates on / {\\\
collision, running red traffic N pomisoen
light, too far from lane center ..l =i >
or stuck (if no reason to stop) ?
“':r-i -'\:\' I| P greeam \ Seep tteinil
red tight '\\ Tight I'\\m'.l.lcln .

F ¥ ém
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Network architecture

A | ps

MINES PARIS

- U.S. Traffic lights =» Need to use COLOR and high-enough
resolution = big network, hard and slow to train

- Use a resnet-18 (10 times more weight than previously used
in DQN-like network)

- Handle turn-orders (at intersections) with multi-head

b ranc h i N g [1 ] [1] Codevilla et al., End-to-end driving via Conditional Imitation Learning, 2017
[2] M. Fortunato et al.. Noisy Networks for Exploration, 2017

Image encoder

] Past Fully Fully Output discrete
: 4 1028 512 B
| vehicle {‘:‘\ connectad CORNBE b — afg:;;s‘
nois nois
fpust oy (naisy) stearingxthrottie
+1 full brake
Past |
RGB Custom
images ResNet-181 N\g1az Multi-head branching (x6)
19z Fully
connected
(noisy)
. 1 64 Fully 8192 2]
S:;mr;f pl— cgsd connected
i Emoec, {regular) 1
wb Input \
command (left, A
l changelaneright,

. ; follow lane, etc)
Implicit Quantiles Network
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A | Offline encoder
MINES PARIS SUPERVISED training

Decoders (removed in RL training)

Semantic
Decoder

Image encoder (frozen in RL training)

Past x288
RGB —x3 | Custom
images ResNet-18
Used for RL

Encoder used | Inters. TL Ped.
Random 0% NA NA
No TL state 33.4% 80% 82%
No segmentation 41.6%  96.5%  63%
All affordances 61.9% 97.6% 76%

Table 1. Comparison of agent performance with regards to encoder
training loss (random weights, trained without traffic light loss,
without semantic segmentation loss, or with all affordance losses)
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- Examples of Autonomous Driving
MINES PARIS obtained with our DRL

"End-to-End Model-Free Reinforcement Learning for Urban Driving using
Implicit Affordances", M.Toromanoff, E.Wirbel & F.Moutarde, CVPR’2020
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4 Conclusions & perspectives
B sk O ot driving

- DRL allows to learn driving behavior without any
example provided by human

- Only the REWARD needed to define objectives

- Very encouraging first results in simulation: able
to learn a kind of "Intelligent visual servoing"
avoiding collisions & respecting traffic lights +
high-level orders (e.g. turn-left at next intersection)

- Winner of "vision-only" track at CARLA
"Autonomous Driving challenge™ 2019 & 2020 !!

- Future work:
- transferrability to real-world videos
- Combination of Imitation-Learning and RL?
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A2 | psLx General conclusion on DRL

MINES PARIS

- Many variants of algorithms
- Generally necessary to learn in some simulator
- Allows to learn intelligent BEHAVIORS (real Al?)

- Big potential of Deep Reinforcement Learning
in particular in Robotics and Automated Vehicles
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